Is the Rotation of Spherical Harmonics Using Wigner Matrices Correct?

Like Tony Stark
Messages
182
Reaction score
6
Homework Statement
Rotate the spherical harmonic $$\ket{l=2, m=1}=Y_{2, 1}$$ an angle of π/4 about the y-axis.
Relevant Equations
$$\sum_{m'=-l}^{l} {d^{(l)}}_{m, m'} Y_{l, m'}$$
I tried using the Wigner matrices:

$$\sum_{m'=-2}^{2} {d^{(2)}}_{1m'} Y_{2; m'}={d^{(2)}}_{1 -2} Y_{2; -2} + {d^{(2)}}_{1 -1} Y_{2; -1} + ...= -\frac{1-\cos(\beta)}{2} \sin(\beta) \sqrt{\frac{15}{32 \pi}} \sin^2(\theta) e^{-i \phi} + ...$$

where $$\beta=\frac{\pi}{4}$$. But I don't know if this is ok since $$\beta$$ is an Euler angle while $$\theta$$ and $$\phi$$ are not. If this is not right, what should I do?
 
Last edited:
Physics news on Phys.org
The angle ##\beta## will go away as it is replaced by the value of the rotation, leaving a function of ##(\theta,\phi)##, which is what you want.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top