Is the Rotation of Spherical Harmonics Using Wigner Matrices Correct?

Like Tony Stark
Messages
182
Reaction score
6
Homework Statement
Rotate the spherical harmonic $$\ket{l=2, m=1}=Y_{2, 1}$$ an angle of π/4 about the y-axis.
Relevant Equations
$$\sum_{m'=-l}^{l} {d^{(l)}}_{m, m'} Y_{l, m'}$$
I tried using the Wigner matrices:

$$\sum_{m'=-2}^{2} {d^{(2)}}_{1m'} Y_{2; m'}={d^{(2)}}_{1 -2} Y_{2; -2} + {d^{(2)}}_{1 -1} Y_{2; -1} + ...= -\frac{1-\cos(\beta)}{2} \sin(\beta) \sqrt{\frac{15}{32 \pi}} \sin^2(\theta) e^{-i \phi} + ...$$

where $$\beta=\frac{\pi}{4}$$. But I don't know if this is ok since $$\beta$$ is an Euler angle while $$\theta$$ and $$\phi$$ are not. If this is not right, what should I do?
 
Last edited:
Physics news on Phys.org
The angle ##\beta## will go away as it is replaced by the value of the rotation, leaving a function of ##(\theta,\phi)##, which is what you want.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top