Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Is the trace of a matrix independent of basis?

  1. Jan 23, 2017 #1

    Just wondering if the trace of a matrix is independent of basis, seeing as the trace of a matrix is equal to the sun of the eigenvalues of the operator that the matrix is a representation of.

    Thank you
  2. jcsd
  3. Jan 23, 2017 #2


    User Avatar
    2016 Award

    Staff: Mentor

  4. Jan 23, 2017 #3
    Thank you mfb!
  5. Jan 23, 2017 #4


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    What you might have meant is: if an operator is represented by a matrix ##M_1## in one basis, and ##M_2## in another basis, then is ##Tr(M_1) = Tr(M_2)##?

    There is an important point that an operator does not change by a change of basis, but the matrix representing an operator may change from basis to basis.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted

Similar Discussions: Is the trace of a matrix independent of basis?
  1. The Trace Theorem? (Replies: 3)