I Is There a Connection Between Conjugation and Change of Basis?

knowwhatyoudontknow
Messages
30
Reaction score
5
TL;DR Summary
Can the adjoint representation of a Lie group be regarded as a change of basis?
For transformations, A and B are similar if A = S-1BS where S is the change of basis matrix.

For Lie groups, the adjoint representation Adg(b) = gbg-1, describes a group action on itself.

The expressions have similar form except for the order of the inverses. Is there there any connection between the two or are they entirely different concepts?
 
Last edited:
Physics news on Phys.org
A and B are also similar if there exists an invertible S such that A = SBS^{-1}.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top