I Is There a Connection Between Conjugation and Change of Basis?

knowwhatyoudontknow
Messages
30
Reaction score
5
TL;DR Summary
Can the adjoint representation of a Lie group be regarded as a change of basis?
For transformations, A and B are similar if A = S-1BS where S is the change of basis matrix.

For Lie groups, the adjoint representation Adg(b) = gbg-1, describes a group action on itself.

The expressions have similar form except for the order of the inverses. Is there there any connection between the two or are they entirely different concepts?
 
Last edited:
Physics news on Phys.org
A and B are also similar if there exists an invertible S such that A = SBS^{-1}.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top