I agree with all of this, which is an entirely consistent way of discussing QFT, but it's a perspective that I consider to be laden with conventions. What might be called the "Einstein conventions" are also entirely consistent, and we can rigorously transform from one to the other (arguably this is what is done in my arXiv:1709.06711 for the free EM, Dirac, and complex KG quantum and random fields,
which is being not discussed here on PF; I'll propose that the math of the exact transformations there implicitly defines what the Einstein conventions might be), but within the Einstein conventions there is a precise kind of Lorentz invariant nonlocality and other properties are transformed (including that the positivity of the quantum Hamiltonian operator becomes the positivity of the Hamiltonian function). The conventions you are pressing for, almost insisting upon, which might be crudely stated as the Correspondence Principle and all its consequences, have been supremely successful for the last 90 years, but I suggest that a significant part of the progress in our understanding of and in our ability to engineer using quantum physics over the last 30 years, say, has been through considering alternative conventions, in some of which the effective nonlocality of a state can be considered something of a resource.