Graduate Is There a Unique Hodge Star Operator for Any p-Vector in Differential Forms?

Click For Summary
The discussion revolves around the uniqueness of the Hodge star operator for a p-vector in differential forms, specifically referencing Flanders' book. The main point raised is whether the operator can be defined uniquely for any p-vector, given the linearity of the wedge product. A participant expresses confusion regarding their formula for the Hodge star operator, particularly in relation to sign corrections and permutations of the basis vectors. They acknowledge a previous mistake in understanding the cyclic nature of the basis, which led to an incorrect sign in their calculations. The conversation emphasizes the importance of alternating linearity in defining the Hodge star operator correctly.
kiuhnm
Messages
66
Reaction score
1
I'm reading section 2.7 of Flanders' book about differential forms, but I have some doubts.
Let ##\lambda## be a ##p##-vector in ##\bigwedge^p V## and let ##\sigma^1,\ldots,\sigma^n## be a basis of ##V##. There's a unique ##*\lambda## such that, for all ##\mu\in \bigwedge^{n-p}##,$$
\lambda \wedge \mu = (*\lambda, \mu)\sigma,
$$ where ##\sigma = \sigma^1 \wedge \cdots \wedge \sigma^n##.
Flanders says it's enough to consider ##\lambda=\sigma^1\wedge\cdots\wedge\sigma^p## because of linearity, but what about ##\lambda=\sigma^H## where ##h_1<\cdots <h_p##?
In that case I get $$
*\lambda = (-1)^s(\sigma^\bar{H},\sigma^\bar{H})\sigma^\bar{H},
$$ where ##H\sqcup\bar{H}=\{1,\ldots,n\}## and ##s## is the permutation needed to permute ##H\bar{H}=(h_1,\ldots,h_p,\bar{h}_1,\ldots,\bar{h}_{n-p})## into ##(1,\ldots,n)##.
I suspect this is not correct... or is it?
 
Physics news on Phys.org
kiuhnm said:
I'm reading section 2.7 of Flanders' book about differential forms, but I have some doubts.
Let ##\lambda## be a ##p##-vector in ##\bigwedge^p V## and let ##\sigma^1,\ldots,\sigma^n## be a basis of ##V##. There's a unique ##*\lambda## such that, for all ##\mu\in \bigwedge^{n-p}##,$$
\lambda \wedge \mu = (*\lambda, \mu)\sigma,
$$ where ##\sigma = \sigma^1 \wedge \cdots \wedge \sigma^n##.
Flanders says it's enough to consider ##\lambda=\sigma^1\wedge\cdots\wedge\sigma^p## because of linearity, but what about ##\lambda=\sigma^H## where ##h_1<\cdots <h_p##?
In that case I get $$
*\lambda = (-1)^s(\sigma^\bar{H},\sigma^\bar{H})\sigma^\bar{H},
$$ where ##H\sqcup\bar{H}=\{1,\ldots,n\}## and ##s## is the permutation needed to permute ##H\bar{H}=(h_1,\ldots,h_p,\bar{h}_1,\ldots,\bar{h}_{n-p})## into ##(1,\ldots,n)##.
I suspect this is not correct... or is it?
I don't understand your question. If you have a permutation of ##\sigma_i## you get another ##*\lambda##, with an appropriate sign. So if we have ##*\sigma##, then we get all ##*\lambda## by linear extension and sign corrections. So the only minor neglect was to say by "because of linearity" instead of "because of alternating linearity".
 
  • Like
Likes kiuhnm
fresh_42 said:
I don't understand your question. If you have a permutation of ##\sigma_i## you get another ##*\lambda##, with an appropriate sign. So if we have ##*\sigma##, then we get all ##*\lambda## by linear extension and sign corrections. So the only minor neglect was to say by "because of linearity" instead of "because of alternating linearity".

I wasn't sure whether my formula for ##*\lambda## was correct. I had doubts because I got a wrong sign in example 1 on page 16. That example says that if the base of ##V## is ##(dx^1,dx^2,dx^3,dt)## where ##(dx^i,dx^i)=1## and ##(dt,dt)=-1##, then $$
*(dx^i dt) = dx^j dx^k,
$$ where "##(i,j,k)## is cyclic order". I didn't take into account the cyclicity of the order and so got a wrong sign. In particular, $$
*(dx^2 dt) = -(dx^1 dx^3) = dx^3 dx^1.
$$ I missed the very last step.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
12
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K