1. ### A Can we always rewrite a Tensor as a differential form?

I read in the book Gravitation by Wheeler that "Any tensor can be completely symmetrized or antisymmetrized with an appropriate linear combination of itself and it's transpose (see page 83; also this is an exercise on page 86 Exercise 3.12). And in Topology, Geometry and Physics by Michio...
2. ### A Differential Forms or Tensors for Theoretical Physics Today

There are a few different textbooks out there on differential geometry geared towards physics applications and also theoretical physics books which use a geometric approach. Yet they use different approaches sometimes. For example kip thrones book “modern classical physics” uses a tensor...
3. ### Differential 1 form on line

Homework Statement This problem is from V.I Arnold's book Mathematics of Classical Mechanics. Q) Show that every differential 1-form on line is differential of some function Homework Equations The differential of any function is $$df_{x}(\psi): TM_{x} \rightarrow R$$ The Attempt at a Solution...
4. ### Integral of a differential form

Homework Statement Suppose that a smooth differential ##n-1##-form ##\omega## on ##\mathbb{R}^n## is ##0## outside of a ball of radius ##R##. Show that $$\int_{\mathbb{R}^n} d\omega = 0.$$ Homework Equations [/B] $$\oint_{\partial K} \omega = \int_K d\omega$$ The Attempt at a Solution...
5. ### I Differential forms and bases

In the exercises on differential forms I often find expressions such as $$\omega = 3xz\;dx - 7y^2z\;dy + 2x^2y\;dz$$ but this is only correct if we're in "flat" space, right? In general, a differential ##1##-form associates a covector with each point of ##M##. If we use some coordinates...
6. ### A Diff. forms: M_a = {u /\ a=0 | u in L}

Here's exercise 1 of chapter 2 in Flanders' book. Let ##L## be an ##n##-dimensional space. For each ##p##-vector ##\alpha\neq0## we let ##M_\alpha## be the subspace of ##L## consisting of all vectors ##\sigma## satisfying ##\alpha\wedge\sigma=0##. Prove that ##\dim(M_\alpha)\leq p##. Prove also...

15. ### A Why the terms - exterior, closed, exact?

Hi all, (Thank you for the continuing responses to my other questions...) I am gaining more and more understanding of differential forms and differential geometry. But now I must ask... Why the words? I understand the exterior derivative, but why is it called "exterior?" Ditto for CLOSED and...
16. ### I How to interpret the differential of a function

In elementary calculus (and often in courses beyond) we are taught that a differential of a function, ##df## quantifies an infinitesimal change in that function. However, the notion of an infinitesimal is not well-defined and is nonsensical (I mean, one cannot define it in terms of a limit, and...
17. ### A Integrating the topics of forms, manifolds, and algebra

Hello, As you might discern from previous posts, I have been teaching myself: Calculus on manifolds Differential forms Lie Algebra, Group Push forward, pull back. I am an engineer approaching this late in life and with a deficient background in math. It is all coming together and I almost...