In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.
For instance, the expression f(x) dx from one-variable calculus is an example of a 1-form, and can be integrated over an oriented interval [a, b] in the domain of f:
∫
a
b
f
(
x
)
d
x
.
{\displaystyle \int _{a}^{b}f(x)\,dx.}
Similarly, the expression f(x, y, z) dx ∧ dy + g(x, y, z) dz ∧ dx + h(x, y, z) dy ∧ dz is a 2-form that has a surface integral over an oriented surface S:
∫
S
(
f
(
x
,
y
,
z
)
d
x
∧
d
y
+
g
(
x
,
y
,
z
)
d
z
∧
d
x
+
h
(
x
,
y
,
z
)
d
y
∧
d
z
)
.
{\displaystyle \int _{S}(f(x,y,z)\,dx\wedge dy+g(x,y,z)\,dz\wedge dx+h(x,y,z)\,dy\wedge dz).}
The symbol ∧ denotes the exterior product, sometimes called the wedge product, of two differential forms. Likewise, a 3-form f(x, y, z) dx ∧ dy ∧ dz represents a volume element that can be integrated over an oriented region of space. In general, a k-form is an object that may be integrated over a k-dimensional oriented manifold, and is homogeneous of degree k in the coordinate differentials.
The algebra of differential forms is organized in a way that naturally reflects the orientation of the domain of integration. There is an operation d on differential forms known as the exterior derivative that, when given a k-form as input, produces a (k + 1)-form as output. This operation extends the differential of a function, and is directly related to the divergence and the curl of a vector field in a manner that makes the fundamental theorem of calculus, the divergence theorem, Green's theorem, and Stokes' theorem special cases of the same general result, known in this context also as the generalized Stokes theorem. In a deeper way, this theorem relates the topology of the domain of integration to the structure of the differential forms themselves; the precise connection is known as de Rham's theorem.
The general setting for the study of differential forms is on a differentiable manifold. Differential 1-forms are naturally dual to vector fields on a manifold, and the pairing between vector fields and 1-forms is extended to arbitrary differential forms by the interior product. The algebra of differential forms along with the exterior derivative defined on it is preserved by the pullback under smooth functions between two manifolds. This feature allows geometrically invariant information to be moved from one space to another via the pullback, provided that the information is expressed in terms of differential forms. As an example, the change of variables formula for integration becomes a simple statement that an integral is preserved under pullback.
Hi,
I am missing the point about the application of Darboux theorem to symplectic manifold case as explained here Darboux Theorem.
We start from a symplectic manifold of even dimension ##n=2m## with a symplectic differential 2-form ##w## defined on it. Since by definition the symplectic 2-form...
First time looking at differential forms. What is the difference of the forms over R^n and on manifolds? Does the exterior product and derivative have different properties? (Is it possible to exaplain this difference without using the tangent space?)
I read in the book Gravitation by Wheeler that "Any tensor can be completely symmetrized or antisymmetrized with an appropriate linear combination of itself and it's transpose (see page 83; also this is an exercise on page 86 Exercise 3.12).
And in Topology, Geometry and Physics by Michio...
There are a few different textbooks out there on differential geometry geared towards physics applications and also theoretical physics books which use a geometric approach. Yet they use different approaches sometimes. For example kip thrones book “modern classical physics” uses a tensor...
Homework Statement
This problem is from V.I Arnold's book Mathematics of Classical Mechanics.
Q) Show that every differential 1-form on line is differential of some function
Homework Equations
The differential of any function is
$$df_{x}(\psi): TM_{x} \rightarrow R$$
The Attempt at a Solution...
Homework Statement
Suppose that a smooth differential ##n-1##-form ##\omega## on ##\mathbb{R}^n## is ##0## outside of a ball of radius ##R##. Show that $$
\int_{\mathbb{R}^n} d\omega = 0.
$$
Homework Equations
[/B]
$$\oint_{\partial K} \omega = \int_K d\omega$$
The Attempt at a Solution...
In the exercises on differential forms I often find expressions such as $$
\omega = 3xz\;dx - 7y^2z\;dy + 2x^2y\;dz
$$ but this is only correct if we're in "flat" space, right?
In general, a differential ##1##-form associates a covector with each point of ##M##. If we use some coordinates...
Here's exercise 1 of chapter 2 in Flanders' book.
Let ##L## be an ##n##-dimensional space. For each ##p##-vector ##\alpha\neq0## we let ##M_\alpha## be the subspace of ##L## consisting of all vectors ##\sigma## satisfying ##\alpha\wedge\sigma=0##. Prove that ##\dim(M_\alpha)\leq p##. Prove also...
I'm reading section 2.7 of Flanders' book about differential forms, but I have some doubts.
Let ##\lambda## be a ##p##-vector in ##\bigwedge^p V## and let ##\sigma^1,\ldots,\sigma^n## be a basis of ##V##. There's a unique ##*\lambda## such that, for all ##\mu\in \bigwedge^{n-p}##,$$
\lambda...
The question provides the vector field (xy, 2yz, 3zx) and asks me to confirm Stokes' theorem (the vector calc version) but I am trying to use the generalized differential forms version. So, I am trying to integrate \omega = xy\,dx + 2yz\,dy + 3zx\,dz along the following triangular boundary...
Hello there,
I had some questions regarding k-forms. I was looking in the wiki page of differential forms(https://en.wikipedia.org/wiki/Differential_form) and noticed that it was was introduced to perform integration independent of the co-ordinates. I am not clear how? Is this because given a...
In a text I am reading (that I unfortunately can't find online) it says:
"[...] differential forms should be thought of as the basis of the vector space of totally antisymmetric covariant tensors. Changing the usual basis dx^{\mu_1} \otimes ... \otimes dx^{\mu_n} with dx^{\mu_1} \wedge ...
I have seen and gone through this thread over and over again but still it is not clear.
https://www.physicsforums.com/threads/vectors-one-forms-and-gradients.82943/
The gradient in different coordinate systems is dependent on a metric
But the 1-form is not dependent on a metric. It is a...
(I am a mechanical engineer, trying to make up for a poor math education)'
I understand that:
A CLOSED form is a differential form whose exterior derivative is 0.0.
An EXACT form is the exterior derivative of another form.
And it stops right there. I am teaching myself differential forms...
So I understand that the integral of a differential form ω over the boundary of some orientable manifold Ω is equal to the integral of its exterior derivative dω over the whole of Ω.
And I understand that one can pull back the integral of a 1-form over a line to the line integral between the...
Suppose we are given this definition of the wedge product for two one-forms in the component notation:
$$(A \wedge B)_{\mu\nu}=2A_{[\mu}B_{\nu]}=A_{\mu}B_{\nu}-A_{\nu}B_{\mu}$$
Now how can we show the switch from tensor products to wedge product below...
Hi all,
(Thank you for the continuing responses to my other questions...)
I am gaining more and more understanding of differential forms and differential geometry.
But now I must ask... Why the words?
I understand the exterior derivative, but why is it called "exterior?"
Ditto for CLOSED and...
In elementary calculus (and often in courses beyond) we are taught that a differential of a function, ##df## quantifies an infinitesimal change in that function. However, the notion of an infinitesimal is not well-defined and is nonsensical (I mean, one cannot define it in terms of a limit, and...
Hello,
As you might discern from previous posts, I have been teaching myself:
Calculus on manifolds
Differential forms
Lie Algebra, Group
Push forward, pull back.
I am an engineer approaching this late in life and with a deficient background in math. It is all coming together and I almost...