MHB Is There an Iff Relation for Polynomial Divisibility in the Ring F[t, t^-1]?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary
The discussion explores the conditions under which the expression \((t^m-1)/(t^n-1)\) is a square in the ring \(F[t, t^{-1}]\) when the characteristic of the field \(F\) is \(p > 2\). It establishes that this occurs if and only if \(m = np^s\) for some integer \(s\). The conversation then shifts to the case when \(p = 2\), questioning if a similar "if and only if" relation can be established. Key lemmas are presented, indicating that \(t^n-1\) divides \(t^m-1\) if and only if \(n\) divides \(m\), and that \(x\) is a power of \(t\) under specific divisibility conditions. The thread concludes by questioning whether the derived relationships constitute an "iff" statement.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the following lemma:

Assume that the characteristic of $F$ is $p$ and $p>2$.
Then $(t^m-1)/(t^n-1)$ is a square in $F[t, t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$) if and only if $(\exists s \in \mathbb{Z}) m=np^s$.
Can we say something about $p=2$ ?

$$(\exists s \in \mathbb{Z})m=2^sn \Leftrightarrow \dots$$

If $(\exists s \in \mathbb{Z})m=2^sn$ then we have that:
$$t^m=t^{2^sn}=\left (t^n\right )^{2^s} \Rightarrow t^m-1=\left (t^n\right )^{2^s}-1=\left (t^n-1\right )^{2^s}$$

Can we write with that a $\Leftrightarrow$ relation?
 
Physics news on Phys.org
There are the following lemmas:

Lemma 1.

For any $x$ in the ring $F[t,t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$), $x$ is a power of $t$ if and only if $x$ divides $1$ and $t-1$ divides $x-1$ (the divisibilities are meant, of course, in $F[t, t^{-1}]$).
Lemma 2.

$t^n-1$ divides $t^m-1$ in $F[t, t^{-1}]$ ($F[t,t^{-1}]$: the polynomials in $t$ and $t^{-1}$ with coefficients in the field $F$) if and only if $n$ divides $m$ in $\mathbb{Z}$.

If $\exists s \in \mathbb{Z}$ so that $m=2^s n$, then $2 \mid m$ and $n \mid m$.

We have the following:

$$2 \mid m \Leftrightarrow t^2-1 \mid t^m-1$$

and $$n \mid m \Leftrightarrow t^n-1 \mid t^m-1$$

Is this an "iff" statement?
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
930
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K