- #1
space-time
- 218
- 4
I've been refurbishing my understanding of some relativistic concepts and I've been specifically studying the concepts of spacelike, timelike and lightlike curves. According to the notes that I have been reading, curves on a Lorentzian manifold can be classified as follows:
If you have a parameterized curve ξ(s) (where s is the parameter to the curve ξ) on some interval (s1, s2), then...
ξ is timelike if gabξ'aξ'b < 0 for all s (just so you know, those are derivatives of the curve w/ respect to s)
ξ is spacelike if gabξ'aξ'b > 0 for all s
Now, I personally wanted to see an example of a timelike curve (specifically a closed timelike curve), and I know that the Godel metric has closed timelike curves. That is why I did some calculations involving the Godel metric. Now here is what I did:
Firstly, here is the spacetime interval for the Godel metric:
ds2 = (1/2ω2)[ -(cdt + exdz)2 + dx2 + dy2 + (1/2)e2xdz2 ]
Now here are the non-zero metric tensor components:
g00 = (-1/2ω2)
g03 = g30 = (-ex/2ω2)
g11 = g22 = (1/2ω2)
g33 = (-e2x/4ω2)
Every other element is 0.
Now here is the curve ξ(s) that I defined and parameterized:
ξ is the top face of a cylinder (standing upright). The top face is at height z = 10 and the radius of the cylinder is 4. The top face of the cylinder is traced counter-clockwise over the interval (0 , 2π) (which basically means that our curve is simply a circle of radius 4). Having said all of this, here is the parameterization:
ξa(s) = [ct , 4cos(s), 4sin(s), 10] (I did not specify a t value because the t value shouldn't matter here as far as I can tell since t does not depend on s. Technically the z value shouldn't matter either since it does not depend on s).
It follows then that the derivative of this vector with respect to s is:
ξ'a(s) = [0 , -4sin(s), 4cos(s), 0]
Now then, when I do the summation of gabξ'aξ'b , I get:
(16 / 2ω2)[sin2(s) + cos2(s)] = 8 / ω2
That final value of 8 / ω2 is positive for all s.
Now according to what I stated earlier, this would make my curve a space-like curve (not a time-like curve). Furthermore, the circular face of a cylinder is definitely a closed curve if your interval is (0 , 2π).
It would seem to me then, that I have specified a closed space-like curve. I was expecting (hoping for) a closed time-like curve, and I had read that the Godel metric apparently has CTC's running through every event.
That is why I want to ask and verify:
Have I come to the correct understanding with the work that I have done? Specifically, have I accurately specified an example of a closed space-like curve in a Godel spacetime, or did I do something wrong? Is my parameterization wrong? Is my curve just a "bad curve" or something like that? Did I simply make an arithmetic error that anyone sees?
I would appreciate any assistance. Thank you.
If you have a parameterized curve ξ(s) (where s is the parameter to the curve ξ) on some interval (s1, s2), then...
ξ is timelike if gabξ'aξ'b < 0 for all s (just so you know, those are derivatives of the curve w/ respect to s)
ξ is spacelike if gabξ'aξ'b > 0 for all s
Now, I personally wanted to see an example of a timelike curve (specifically a closed timelike curve), and I know that the Godel metric has closed timelike curves. That is why I did some calculations involving the Godel metric. Now here is what I did:
Firstly, here is the spacetime interval for the Godel metric:
ds2 = (1/2ω2)[ -(cdt + exdz)2 + dx2 + dy2 + (1/2)e2xdz2 ]
Now here are the non-zero metric tensor components:
g00 = (-1/2ω2)
g03 = g30 = (-ex/2ω2)
g11 = g22 = (1/2ω2)
g33 = (-e2x/4ω2)
Every other element is 0.
Now here is the curve ξ(s) that I defined and parameterized:
ξ is the top face of a cylinder (standing upright). The top face is at height z = 10 and the radius of the cylinder is 4. The top face of the cylinder is traced counter-clockwise over the interval (0 , 2π) (which basically means that our curve is simply a circle of radius 4). Having said all of this, here is the parameterization:
ξa(s) = [ct , 4cos(s), 4sin(s), 10] (I did not specify a t value because the t value shouldn't matter here as far as I can tell since t does not depend on s. Technically the z value shouldn't matter either since it does not depend on s).
It follows then that the derivative of this vector with respect to s is:
ξ'a(s) = [0 , -4sin(s), 4cos(s), 0]
Now then, when I do the summation of gabξ'aξ'b , I get:
(16 / 2ω2)[sin2(s) + cos2(s)] = 8 / ω2
That final value of 8 / ω2 is positive for all s.
Now according to what I stated earlier, this would make my curve a space-like curve (not a time-like curve). Furthermore, the circular face of a cylinder is definitely a closed curve if your interval is (0 , 2π).
It would seem to me then, that I have specified a closed space-like curve. I was expecting (hoping for) a closed time-like curve, and I had read that the Godel metric apparently has CTC's running through every event.
That is why I want to ask and verify:
Have I come to the correct understanding with the work that I have done? Specifically, have I accurately specified an example of a closed space-like curve in a Godel spacetime, or did I do something wrong? Is my parameterization wrong? Is my curve just a "bad curve" or something like that? Did I simply make an arithmetic error that anyone sees?
I would appreciate any assistance. Thank you.