Is this a valid representation of a derivative?

  • Thread starter Thread starter docnet
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
The discussion centers on the validity of an alternative representation of a derivative using the function g(x) instead of the standard definition f(x+h). The participants explore whether defining g(x) as x + sin(h) or other forms can yield valid derivatives, noting that this approach may lead to inconsistencies, particularly at x=0 where the derivative becomes identically zero. The conversation highlights the importance of continuity and differentiability of g(x) in relation to h for the limit to hold true. Additionally, the chain rule is referenced, emphasizing that the behavior of the derivative depends significantly on the derivative of g. Ultimately, the alternative definitions presented raise questions about their utility and correctness in capturing the essence of derivatives.
docnet
Messages
796
Reaction score
488
Homework Statement
The standard definition of the derivative is ##f'(x) = \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}##.

What would happen we replace the term ##f(x+h)## inside the limit with a function composition ##f(g(x))##, with ##\lim_{h\to 0} g(x) = x##? Then ##f(g(x))## converges to ##f(x)## as ##h\to 0##.
Relevant Equations
.
If ##f(g(x)) =f(x+h)##, then ## \lim_{h\to 0} \frac{f(g(x))-f(x)}{h}= \lim_{h\to 0} \frac{f(x+h)-f(x)}{h}=f'(x) ##.

What if we let ##g(x) = x+\sin(h)##?

Then ## \lim_{h\to 0} \frac{f(g(x))-f(x)}{h}= \lim_{h\to 0} \frac{f(x+\sin(h))-f(x)}{h}##

This is not equivalent to that the standard definition of ##f'(x)##. It seems very similar because ##\lim_{h\to 0} x+\sin(h)=x## makes the numerator of the limit converges to ##0## just differently than with ##f(x+h)##. Can we also call this ##f'(x)##?

Thanks for commenting!
 
Physics news on Phys.org
My immediate observation is that in this "alternative" definition, the derivative in ##x=0## is identically ##0##. This is a problem.
 
Hill said:
My immediate observation is that in this "alternative" definition, the derivative in ##x=0## is identically ##0##. This is a problem.
Sorry! Do you mean that it wouldn't work because ##\lim_{h\to 0} x(1-\cos(h))=0##? Thank you for pointing out the example was a bad one. I was thinking more like ##g(x) = x + \sin(h)##. Would this work for a derivative? Thanks.
 
docnet said:
Sorry! Do you mean that it wouldn't work because ##\lim_{h\to 0} x(1-\cos(h))=0##? Thank you for pointing out the example was a bad one. I was thinking more like ##g(x) = x + \sin(h)##. Would this work for a derivative? Thanks.
Just for the record, the example I referred to, was ##g(x)=x(1-\cos(h))##.
With the new example, I don't see how it differs from the standard definition. You could define there, ##h = \sin(p)##.
 
I want to add some extra 'conclusions' related to the 'alternative definition of derivative'. I am aware that anything I cooked up this quickly has a high probability of being wrong, and I'm not attaching anything of value in these statements. If this is correct, then,

If ##\lim_{h\to 0} g(x)=x##, then ##\lim_{h\to 0}\frac{f(g(x))-f(x)}{h}=f'(x).##

If ##\lim_{h\to 0^+} g(x)=x## but ##\lim_{h\to 0^-} g(x)= \text{undefined},## then ##g(x)## can be used to exactly describe the right derivative of ##f## at ##x##.

If ##\lim_{h\to 0^-} g(x)=x## but ##\lim_{h\to 0^+} g(x)= \text{undefined},## then ##g(x)## can be used to exactly describe the left derivative of ##f## at ##x##.
 
docnet said:
Relevant Equations: .

If ##f(g(x)) =f(x+h)##,
##f(g(x))## is a constant. It is not a function of ##h##. If you want it to change as ##h \to 0##, you will have to specify how that happens. You might be interested in the chain rule: ##(f\circ g)' = (f' \circ g) \cdot g'##. So the result depends a lot on ##g'##.
 
FactChecker said:
##f(g(x))## is a constant. It is not a function of ##h##. If you want it to change as ##h \to 0##, you will have to specify how that happens. You might be interested in the chain rule: ##(f\circ g)' = (f' \circ g) \cdot g'##. So the result depends a lot on ##g'##.
Okay. I'm having a difficult time understanding. Can you explain more? Thank you.
Also, Is it fair to say ##f(g(x))## is a function of ##x## with a parameter ##h##, which is also the parameter that the limit is with respect to?

I'm a bit confused by why we have to differentiate ##g##. Are you implying that ##g## needs to be continuous and differentiable with respect to ##h##, as well as converging to ##x## as ##h\to 0##?Thank you.
 
Why do you think this will be useful? g(x,h) is always going to have to look like x+h for small h.
 
docnet said:
I want to add some extra 'conclusions' related to the 'alternative definition of derivative'. I am aware that anything I cooked up this quickly has a high probability of being wrong, and I'm not attaching anything of value in these statements. If this is correct, then,

If ##\lim_{h\to 0} g(x)=x##, then ##\lim_{h\to 0}\frac{f(g(x))-f(x)}{h}=f'(x).##

If ##\lim_{h\to 0^+} g(x)=x## but ##\lim_{h\to 0^-} g(x)= \text{undefined},## then ##g(x)## can be used to exactly describe the right derivative of ##f## at ##x##.

If ##\lim_{h\to 0^-} g(x)=x## but ##\lim_{h\to 0^+} g(x)= \text{undefined},## then ##g(x)## can be used to exactly describe the left derivative of ##f## at ##x##.
Still a problem.
For example, let ##g(x)=x##.
Then ##\lim_{h\to 0} g(x)=x##.
But ##\lim_{h\to 0}\frac{f(g(x))-f(x)}{h}=\lim_{h\to 0}\frac{f(x)-f(x)}{h}=0##.
 
  • Like
  • Informative
Likes FactChecker and docnet
  • #10
Frabjous said:
Why do you think this will be useful? g(x,h) is always going to have to look like x+h for small h.
I'm not sure if it's useful on its own. The reason I asked is because there was a similar formulation in a stochastic analysis homework at school, and I just wanted to understand it correctly.
 
  • #11
An informal comment. There's this integral called the Stieljes Integral. Yours is a sort of Stieljes derivative. Or maybe a sort of directional derivative.
 
  • #12
You are replacing ##x+h##, a function of ##x## and ##h##, with ##g(x)##, a function only of ##x##. So ##f(g(x))## has nothing to do with ##h## and never changes as ##h \to 0##.

UPDATE: If you really meant ##\lim_{h \to 0} \frac {f(g(x+h))-f(g(x))} {h}## then you have the chain rule:
##(f\circ g)' = (f'\circ g)\cdot g'##
 
Last edited:
  • #13
Finding counter examples is trivial. If you take ##g(x) = x + 2h## you get twice the usual derivative. If you take ##g(x) = x + h^2## you get zero.
 
  • Like
Likes FactChecker