Is this approach to evaluating a complex integral valid?

Click For Summary
SUMMARY

The discussion centers on the validity of evaluating the complex integral $\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx$. The approach involves treating the imaginary unit $i$ as a constant and transforming the integral into a limit of a real integral along a specific path in the complex plane. The conclusion drawn is that the integral evaluates to $\frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right)$, with some participants asserting that the method is valid while others demand further justification. The integral's evaluation also relates to the asymptotic expansion of the error function.

PREREQUISITES
  • Complex analysis, specifically integration in the complex plane
  • Understanding of the error function and its asymptotic properties
  • Knowledge of analytic functions and their properties
  • Familiarity with Fourier transforms and oscillatory integrals
NEXT STEPS
  • Study the properties of the error function and its asymptotic behavior
  • Learn about contour integration techniques in complex analysis
  • Explore the relationship between Fourier transforms and integrals of oscillatory functions
  • Investigate the implications of treating complex constants in real integrals
USEFUL FOR

Mathematicians, physicists, and students engaged in complex analysis, particularly those interested in evaluating integrals involving oscillatory functions and understanding their convergence properties.

polygamma
Messages
227
Reaction score
0
$\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx = \lim_{R \to \infty} \int_{0}^{R} e^{-ix^{2}} \ dx $

I think I'm perfectly justified in treating $i$ like a constant since we're integrating with respect to a real variable.$ \displaystyle = \frac{1}{\sqrt{i}} \ \lim_{R \to \infty} \int_{0}^{i\sqrt{R}} e^{-u^{2}} \ du $ EDIT: Initially we were integrating along the positive real axis. By making that substitution, we are now integrating along the line in the complex plane that begins at the origin and makes a 45 degree angle with the positive real axis. But since the exponential function is analytic, the path itself doesn't matter. All that matters is the starting point and the ending point.$= \displaystyle \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \lim_{R \to \infty} \int_{0}^{i\sqrt{R}} e^{-u^{2}} \ du = \frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \lim_{R \to \infty} \text{erf} \left( i \sqrt{R} \right) $$ \displaystyle = \frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right)$ since the limit evaluates to 1 (which can be evaluated by using the asymptotic expansion of the error function)Depending on whom I ask, I get a different response. Some say it's totally valid; others say that it needs more justification to be valid; while a few contend it's totally invalid. Which is it?I've seen people say that $\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx = \frac{1}{\sqrt{i}} \int_{0}^{\infty} e^{-u^{2}} \ du$. Now that would require more justification.
 
Last edited:
Physics news on Phys.org
Random Variable said:
$\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx = \lim_{R \to \infty} \int_{0}^{R} e^{-ix^{2}} \ dx $

I think I'm perfectly justified in treating $i$ like a constant since we're integrating with respect to a real variable.$ \displaystyle = \frac{1}{\sqrt{i}} \ \lim_{R \to \infty} \int_{0}^{i\sqrt{R}} e^{-u^{2}} \ du $ EDIT: Initially we were integrating along the positive real axis. By making that substitution, we are now integrating along the line in the complex plane that begins at the origin and makes a 45 degree angle with the positive real axis. But since the exponential function is analytic, the path itself doesn't matter. All that matters is the starting point and the ending point.$= \displaystyle \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \lim_{R \to \infty} \int_{0}^{i\sqrt{R}} e^{-u^{2}} \ du = \frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \lim_{R \to \infty} \text{erf} \left( i \sqrt{R} \right) $$ \displaystyle = \frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right)$ since the limit evaluates to 1 (which can be evaluated by using the asymptotic expansion of the error function)Depending on whom I ask, I get a different response. Some say it's totally valid; others say that it needs more justification to be valid; while a few contend it's totally invalid. Which is it?I've seen people say that $\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx = \frac{1}{\sqrt{i}} \int_{0}^{\infty} e^{-u^{2}} \ du$. Now that would require more justification.

For \(x \in \mathbb{R}\) we can write:

\[e^{-ix^2}=\cos(x^2)-i\sin(x^2)\]

So:

\[ \int_0^{\infty}e^{-ix^2}=\int_0^{\infty} \cos(x^2)\;dx - i \int_0^{\infty}\sin(x^2)\; dx = \sqrt{\frac{\pi}{8}}(1-i)\]

Which without checking in detail looks like your last line to me.

CB
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K