MHB Is this approach to evaluating a complex integral valid?

polygamma
Messages
227
Reaction score
0
$\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx = \lim_{R \to \infty} \int_{0}^{R} e^{-ix^{2}} \ dx $

I think I'm perfectly justified in treating $i$ like a constant since we're integrating with respect to a real variable.$ \displaystyle = \frac{1}{\sqrt{i}} \ \lim_{R \to \infty} \int_{0}^{i\sqrt{R}} e^{-u^{2}} \ du $ EDIT: Initially we were integrating along the positive real axis. By making that substitution, we are now integrating along the line in the complex plane that begins at the origin and makes a 45 degree angle with the positive real axis. But since the exponential function is analytic, the path itself doesn't matter. All that matters is the starting point and the ending point.$= \displaystyle \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \lim_{R \to \infty} \int_{0}^{i\sqrt{R}} e^{-u^{2}} \ du = \frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \lim_{R \to \infty} \text{erf} \left( i \sqrt{R} \right) $$ \displaystyle = \frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right)$ since the limit evaluates to 1 (which can be evaluated by using the asymptotic expansion of the error function)Depending on whom I ask, I get a different response. Some say it's totally valid; others say that it needs more justification to be valid; while a few contend it's totally invalid. Which is it?I've seen people say that $\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx = \frac{1}{\sqrt{i}} \int_{0}^{\infty} e^{-u^{2}} \ du$. Now that would require more justification.
 
Last edited:
Physics news on Phys.org
Random Variable said:
$\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx = \lim_{R \to \infty} \int_{0}^{R} e^{-ix^{2}} \ dx $

I think I'm perfectly justified in treating $i$ like a constant since we're integrating with respect to a real variable.$ \displaystyle = \frac{1}{\sqrt{i}} \ \lim_{R \to \infty} \int_{0}^{i\sqrt{R}} e^{-u^{2}} \ du $ EDIT: Initially we were integrating along the positive real axis. By making that substitution, we are now integrating along the line in the complex plane that begins at the origin and makes a 45 degree angle with the positive real axis. But since the exponential function is analytic, the path itself doesn't matter. All that matters is the starting point and the ending point.$= \displaystyle \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \lim_{R \to \infty} \int_{0}^{i\sqrt{R}} e^{-u^{2}} \ du = \frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) \lim_{R \to \infty} \text{erf} \left( i \sqrt{R} \right) $$ \displaystyle = \frac{\sqrt{\pi}}{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right)$ since the limit evaluates to 1 (which can be evaluated by using the asymptotic expansion of the error function)Depending on whom I ask, I get a different response. Some say it's totally valid; others say that it needs more justification to be valid; while a few contend it's totally invalid. Which is it?I've seen people say that $\displaystyle \int_{0}^{\infty} e^{-ix^{2}} \ dx = \frac{1}{\sqrt{i}} \int_{0}^{\infty} e^{-u^{2}} \ du$. Now that would require more justification.

For \(x \in \mathbb{R}\) we can write:

\[e^{-ix^2}=\cos(x^2)-i\sin(x^2)\]

So:

\[ \int_0^{\infty}e^{-ix^2}=\int_0^{\infty} \cos(x^2)\;dx - i \int_0^{\infty}\sin(x^2)\; dx = \sqrt{\frac{\pi}{8}}(1-i)\]

Which without checking in detail looks like your last line to me.

CB
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
791
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K