Is this equation involving the acceleration of gravity correct?

Click For Summary

Homework Help Overview

The discussion revolves around the correctness of an equation involving the acceleration due to gravity, represented as multiple equations derived from the equations of motion under constant acceleration. The original poster presents several expressions for gravity, questioning their validity.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants are examining the validity of various equations for gravity, questioning the assumptions made regarding initial conditions and the nature of motion. There is a call for clarity on the definitions of variables and the overall context of the problem.

Discussion Status

Some participants have raised questions about the assumptions underlying the original poster's equations, suggesting that certain conditions may not have been explicitly stated. There is an ongoing exploration of the implications of these assumptions on the validity of the equations presented.

Contextual Notes

Participants note that the equations may only hold true under specific conditions, such as uniform acceleration and initial velocity being zero. The need for a clearer definition of the scenario is emphasized.

Huzaifa
Messages
40
Reaction score
2
Homework Statement
Is this equation correct: $$g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8ms^{-2}$$?
Relevant Equations
##g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8ms^{-2}##
$$\begin{aligned}v=u+at\\ \Rightarrow v=gt\\ \Rightarrow g=\dfrac{v}{t} \cdots (1)\end{aligned}$$
$$\begin{aligned}s=ut+\dfrac{1}{2}at^{2}\\ \Rightarrow s=\dfrac{1}{2}gt^{2}\\ \Rightarrow g=\dfrac{2s}{t^{2}}\cdots (2)\end{aligned}$$
$$\begin{aligned}s=vt-\dfrac{1}{2}at^{2}\\ \Rightarrow s-vt=-\dfrac{1}{2}at^{2}\\ \Rightarrow g=\dfrac{2\left( vt-s\right) }{t^{2}} \cdots (3)\end{aligned}$$
$$\begin{aligned}v^{2}-u^{2}=2as\\ \Rightarrow v^{2}=2as\\ \Rightarrow g=\dfrac{v^{2}}{2s} \cdots (4)\end{aligned}$$
$$g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8\ \mathrm{m s^{-2}}$$
 
Physics news on Phys.org
What's the question precisely?
 
  • Like
Likes   Reactions: Steve4Physics
Huzaifa said:
Homework Statement:: Is this equation correct: $$g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8ms^{-2}$$?
Relevant Equations:: ##g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8ms^{-2}##

Huzaifa said:
$$\begin{aligned}v=u+at\\ \Rightarrow v=gt\\ \Rightarrow g=\dfrac{v}{t} \cdots (1)\end{aligned}$$
$$\begin{aligned}s=ut+\dfrac{1}{2}at^{2}\\ \Rightarrow s=\dfrac{1}{2}gt^{2}\\ \Rightarrow g=\dfrac{2s}{t^{2}}\cdots (2)\end{aligned}$$
$$\begin{aligned}s=vt-\dfrac{1}{2}at^{2}\\ \Rightarrow s-vt=-\dfrac{1}{2}at^{2}\\ \Rightarrow g=\dfrac{2\left( vt-s\right) }{t^{2}} \cdots (3)\end{aligned}$$
$$\begin{aligned}v^{2}-u^{2}=2as\\ \Rightarrow v^{2}=2as\\ \Rightarrow g=\dfrac{v^{2}}{2s} \cdots (4)\end{aligned}$$
$$g=\dfrac{v}{t}=\dfrac{2s}{t^{2}}=\dfrac{2\left( vt-s\right) }{t^{2}}=\dfrac{v^{2}}{2s}=9.8\ \mathrm{m s^{-2}}$$
What you have is multiple equations.

You need to describe the overall situation. Also define precisely what each variable means.

Of course, answer the question asked by @PeroK. .
 
  • Like
Likes   Reactions: Steve4Physics
SammyS said:
You need to describe the overall situation. Also define precisely what each variable means.
The overall situation is constant or uniform acceleration. Here, s = displacement, u = initial velocity, v = final velocity, a = acceleration, t = time. These are equations of motion.
 
None of the numbered equations [except maybe (3)] are generally true.
Each is true in some special [so far unstated] cases
 
  • Like
Likes   Reactions: Steve4Physics
Hi @Huzaifa. You seem to be making a number of unstated assunptions, e.g.
- motion is in the vertical direction only, with gravity the only force;
- initial velocity (u) is zero, so you are only considering objects released from rest at t=0.

But of course I'm just guessing, as you haven't yet answered @PeroK's question (Post #2).
 
  • Like
Likes   Reactions: SammyS

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
945
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K