- #1
- 466
- 0
Find the general solution of the following ODE:
dx/dt = 3x^(2) cos t
Make x the subject of the solution.
Heres my solution, is this correct?
dx/dt = 3x^(2) cos t
dx/3x^(2) = cos t dt
Integrating both sides gives:
ln (3x^(2)) = sin t + C
3x^(2) = e^(sin t + C)
3x^(2) = Ae^(sin t)
x^(2) = (Ae^(sin t))/3)
x = SQRT(Ae^(sin t))/3)
dx/dt = 3x^(2) cos t
Make x the subject of the solution.
Heres my solution, is this correct?
dx/dt = 3x^(2) cos t
dx/3x^(2) = cos t dt
Integrating both sides gives:
ln (3x^(2)) = sin t + C
3x^(2) = e^(sin t + C)
3x^(2) = Ae^(sin t)
x^(2) = (Ae^(sin t))/3)
x = SQRT(Ae^(sin t))/3)