Is this graph schetched right?

  • Thread starter Thread starter hyper
  • Start date Start date
  • Tags Tags
    Graph
Click For Summary
The discussion centers on a graph from a solutions manual that appears to depict straight lines instead of hyperbolas when x=0 or z=0. Participants clarify that the expected hyperbolas in the yz-plane should be represented by the equation y^2 - 16z^2 = 16, which indeed indicates hyperbolas. There is confusion regarding the graph's accuracy, with one user suggesting it may represent a hyperboloid of one sheet rather than two sheets. The original poster questions the validity of the solutions manual's graph, indicating a potential error. The conversation highlights the importance of accurate graphical representation in mathematical solutions.
hyper
Messages
48
Reaction score
0
In the sollutions manual is this picture:
http://img7.imageshack.us/my.php?image=graph.png

But how can this be right? If you put x=0 or z=0, you are supposed to get hyperbolas in the yz-and xz-plane, but they are straight lines?

I think you will get a hyperbola in the yz-plane cause you get the equation y^2-16z^2=16, this can be written like (y^2)/4^2-z^2=1. Have I overlooked anything, or is the sollutions manual wrong here?
 
Physics news on Phys.org
hyper said:
In the sollutions manual is this picture:
http://img7.imageshack.us/my.php?image=graph.png

But how can this be right? If you put x=0 or z=0, you are supposed to get hyperbolas in the yz-and xz-plane, but they are straight lines?

I think you will get a hyperbola in the yz-plane cause you get the equation y^2-16z^2=16, this can be written like (y^2)/4^2-z^2=1. Have I overlooked anything, or is the sollutions manual wrong here?

I'm not sure what your question is. Yes, if x= 0 you get a hyperbola in the yz-plane and similarly for y= 0. I don't know why you say "but they are straight lines". If you are saying they look like straight lines in the picture, that picture simply is large enough or detailed enough to tell. The figure is a "hyperboloid of two sheets".
 
But look in the yz-plane, we are supposed to see the hyperbola y^2/(16)-z^2=1. The means it is supposed the cross the y-axis at y=+-4, but it goes all the way to the origin?
 
I take back what I said before. That is a hyperboloid of one sheet and there is a "hole" of radius 4 around the z-axis. Where did you get that picture? It looks like it might be the graph of 16z^2- x^2- y^2= 16[/math].
 
Thank you. I got it from the sollutions manual from Thomas Calculus.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
1
Views
1K
Replies
12
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K