MHB Is This Partial Fraction Decomposition Set Up Correct?

Click For Summary
The discussion focuses on the setup of a partial fraction decomposition for the integral of the function 3x² + x - 18 over x³ + 9x. Initial setups included unnecessary terms, leading to clarification that the constant term C was not needed since it was already accounted for in the B term. The correct decomposition was confirmed as A = -2, B = 5, and C = 1, leading to the final expression of the integral. Participants also discussed the calculation of coefficients and addressed minor errors in the integration process. The conversation emphasizes the importance of accurately setting up partial fraction decompositions in calculus.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.8.5,42}\\$
$\textsf{partial fraction decomostion}\\$
\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
&& \frac{3x^2+x-18}{x^3+9x}
&=\frac{Ax+B}{x^2+9}
+\frac{C}{x}
& &(2)&
\end{align}

$\textit{just seeing if this is set up ok before finding values} $
 
Last edited:
Physics news on Phys.org
Re: partial fraction decomostion

karush said:
$\tiny{206.8.5,42}\\$
$\textsf{partial fraction decomostion}\\$
\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
&& \frac{3x^2+x-18}{x^3+9x}
&=\frac{Ax+B}{x^2+9}
+\frac{C}{x^2+9}
+\frac{D}{x}
& &(2)&
\end{align}

$\textit{just seeing if this is set up ok before finding values} $
You are fine but you already accounted for the constant over x^2 + 9 when you included the B term. You don't need C.

-Dan
 
Re: partial fraction decomostion

ok i rewrote OP
thot i could slip under the wire

I'll proceed..
 
Re: partial fraction decomostion

$\tiny{206.8.5,42}\\$
$\textsf{partial fraction decomostion}\\$
\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
&& \frac{3x^2+x-18}{x^3+9x}
&=\frac{Ax+B}{x^2+9}-\frac{C}{x}& &(2)& \\
\\
&&3x^2+x-18&=(Ax+B)x-(x^2+9)C & &(3)& \\
&& &=Ax^2+Bx-Cx^2-9C & &(4)&\\
&x=0& -18&=-9C & &(5)&\\
&& 2&=C & &(6)&\\
&x=1& -14&=A+B-20 & &(7)&\\
&& 6&=A+B & &(8)&\\
&x=-1& && &(9)&\\
&& -14&=A-B-16 & &(10)&\\
&& 4&=A-B & &(11)& \\
&(8)+(11)& A&=5 \\
&\therefore (8)& B&=1
\end{align}

$\textit{just seeing if this is correct} $
 
Re: partial fraction decomostion

I would proceed only slight differently:

$$\frac{3x^2+x-18}{x^3+9x}=\frac{3x^2+x-18}{x(x^2+9)}=\frac{A}{x}+\frac{Bx+C}{x^2+9}$$

This implies

$$3x^2+x-18=A(x^2+9)+(Bx+C)x=(A+B)x^2+Cx+9A$$

Equating coefficients, we see:

$$9A=-18\implies A=-2$$

$$C=1$$

$$A+B=3\implies B=5$$

Hence:

$$\frac{3x^2+x-18}{x^3+9x}=-\frac{2}{x}+\frac{5x+1}{x^2+9}$$

This agrees with your result. :D
 
Re: partial fraction decomostion

\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
\\
&& &=5\int\frac{x}{x^2+9}
+\int\frac{1}{x^2+9}
-2\int\frac{1}{x}& &(2)&\\
\\
&& &=\frac{5\ln\left({x^2+9}\right)}{2}
+\frac{\arctan(\frac{x}{3})}{3}
+2\ln\left({|x|}\right)+C & &(3)&
\end{align}
 
Last edited:
Re: partial fraction decomostion

What happened to the coefficient of $-2$ in front of the second log function? You could use a matrix I suppose, but this one is simple enough to make it unnecessary or beneficial, IMHO.
 
Re: partial fraction decomostion

I corrected post 6

my excuse: tablet with small screen
my reason: none
 
Re: partial fraction decomostion

karush said:
$\tiny{206.8.5,42}\\$
$\textsf{partial fraction decomostion}\\$
\begin{align}
\displaystyle
&& I_{42}&=\int\frac{3x^2+x-18}{x^3+9x}\, dx& &(1)&\\
&& \frac{3x^2+x-18}{x^3+9x}
&=\frac{Ax+B}{x^2+9}-\frac{C}{x}& &(2)& \\
\\
&&3x^2+x-18&=(Ax+B)x-(x^2+9)C & &(3)& \\
&& &=Ax^2+Bx-Cx^2-9C & &(4)&\\
&x=0& -18&=-9C & &(5)&\\
&& 2&=C & &(6)&\\
&x=1& -14&=A+B-20 & &(7)&\\
&& 6&=A+B & &(8)&\\
&x=-1& && &(9)&\\
&& -14&=A-B-16 & &(10)&\\

When x= -1, 3x^2+ x- 18= 3(1)+ (-1)- 18= 3- 19= -16

&& 4&=A-B & &(11)& \\
&(8)+(11)& A&=5 \\
&\therefore (8)& B&=1
\end{align}

$\textit{just seeing if this is correct} $
 

Similar threads