MHB Is this the correct approach for using Taylor series in this problem?

Click For Summary
The discussion revolves around using Taylor series to approximate the current (I) in a circuit with a resistor (R) and an inductor (L) under the condition of small resistance. The user initially attempts to apply the geometric series expansion but is uncertain about the next steps. A suggestion is made to correct the expression for current to I = (V/R)(1 - e^(-Rt/L)), which is more appropriate for the problem. The Taylor expansion for e^x is introduced, indicating that for small x, e^x can be approximated as 1 + x, leading to the desired approximation of I as (Vt/L). This approach clarifies the correct method to solve the problem using Taylor series.
Ironhorse1
Messages
1
Reaction score
0
Hi there! I need a bit of help on a homework problem. The problem is about a voltage (V) across a circuit with a resistor (R) and and inductor (L). The current at time "t" is:

I= (V/R)(1/e^(-RT/L)

And the problem asks me to use Taylor series to deduce that I is approximately equal to (Vt/L) if R is small.

I have started by trying to use the known Taylor Series expansion for the geometric series, (1/1-x) = 1+x+x^2+x^3+... replacing x with (V/R). I'm not sure what to do next, or if this was the right first step to take.

What do you think? I so very much appreciate any help!
 
Physics news on Phys.org
Ironhorse said:
Hi there! I need a bit of help on a homework problem. The problem is about a voltage (V) across a circuit with a resistor (R) and and inductor (L). The current at time "t" is:

I= (V/R)(1/e^(-RT/L)

And the problem asks me to use Taylor series to deduce that I is approximately equal to (Vt/L) if R is small.

I have started by trying to use the known Taylor Series expansion for the geometric series, (1/1-x) = 1+x+x^2+x^3+... replacing x with (V/R). I'm not sure what to do next, or if this was the right first step to take.

What do you think? I so very much appreciate any help!

Hi Ironhorse! Welcome to MHB! (Smile)

Can it be that your current should be:
$$I = \frac V R \left(1 - e^{-Rt/L}\right)$$
?

The Taylor expansion for $e^x$ is:
$$e^x \approx 1 + x$$
if $x$ is small.
If we substitute that in what I think $I$ should be, we'll get the expression we're supposed to deduce.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
16K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
6
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K