Is Weinberg missing a \gamma_5 in his mass parameter redefinition?

  • Context: Graduate 
  • Thread starter Thread starter ChrisVer
  • Start date Start date
  • Tags Tags
    Qft Weinberg
Click For Summary
SUMMARY

The discussion centers on a potential oversight in Weinberg's mass parameter redefinition in his work "Quantum Theory of Fields". The transformation of the fields is expressed as \(\psi_f \rightarrow \exp(i a_f \gamma_5) \psi_f\), leading to the mass term Lagrangian \(L_m = -\frac{1}{2} \sum_f M_f \bar{\psi}_f (1+ \gamma_5) \psi_f - \frac{1}{2} \sum_f M^*_f \bar{\psi}_f (1- \gamma_5) \psi_f\). The participant argues that Weinberg's redefinition \(M_f \rightarrow M_f \exp(2i a_f)\) is incomplete and should include a \(\gamma_5\), resulting in \(M_f \rightarrow M_f \exp(2i a_f \gamma_5)\).

PREREQUISITES
  • Understanding of quantum field theory concepts, particularly mass terms and Lagrangians.
  • Familiarity with the properties of the gamma matrices, especially \(\gamma_5\).
  • Knowledge of field transformations in quantum mechanics.
  • Experience with mathematical expansions of exponential functions in the context of quantum fields.
NEXT STEPS
  • Study the derivation of mass terms in quantum field theory, focusing on Weinberg's approach.
  • Explore the implications of \(\gamma_5\) in particle physics and its role in chirality.
  • Learn about the mathematical properties of exponential operators in quantum mechanics.
  • Investigate the derivation and significance of metrics in quantum field theories, particularly in relation to gauge theories.
USEFUL FOR

This discussion is beneficial for theoretical physicists, graduate students in quantum field theory, and researchers focusing on particle physics and gauge theories.

ChrisVer
Science Advisor
Messages
3,372
Reaction score
465
I'm having problem in deriving 23.6.11 from Weinberg's-Quantum Theory of fields...

We have: \psi_f \rightarrow \exp (i a_f \gamma_5) \psi_f, f denoting the flavor.

Then for the mass term lagrangian he writes:

L_m = - \frac{1}{2} \sum_f M_f \bar{\psi}_f (1+ \gamma_5) \psi_f - \frac{1}{2} \sum_f M^*_f \bar{\psi}_f (1- \gamma_5) \psi_f

With M_f the mass parameters. He says that by making a transformation of the fields as above, the mass parameter will be redefined:

M_f \rightarrow M_f \exp (2i a_f)
However I think he is missing a \gamma_5?

Because the first for example term:

\begin{multline}

\\

-\frac{1}{2} \sum_f M_f\psi^\dagger_f e^{-i \gamma_5 a_f}\gamma_0 (1+ \gamma_5) e^{i \gamma_5 a_f} \psi_f=\\

\approx -\frac{1}{2} \sum_f M_f\psi^\dagger_f (1-i \gamma_5 a_f)\gamma_0 (1+ \gamma_5) (1+i \gamma_5 a_f) \psi_f=\\

=-\frac{1}{2} \sum_f \psi^\dagger_f \gamma_0 M_f (1+i \gamma_5 a_f) (1+i \gamma_5 a_f) (1+ \gamma_5)\psi_f=\\

=-\frac{1}{2} \sum_f \bar{\psi}_f M_f (1+i 2 \gamma_5 a_f) (1+ \gamma_5)\psi_f

\end{multline}which leads in the redifinition of M:

M_f \rightarrow M_f \exp (2i a_f \gamma_5)

Any help?
 
Physics news on Phys.org
Expand ## e^{ i \alpha_f \gamma_5} = 1 + i \alpha_f \gamma_5 - \frac{\alpha_f^2}{2!} \gamma_5 \ldots = \cos{\alpha_f} 1 + i \sin{\alpha_f} \gamma_5 ,## since ## \gamma_5^2 = 1##.

The first term in the lagrangian goes to ##\rightarrow \bar{\psi} e^{i \alpha_f \gamma_5} ( 1 + \gamma_5 ) e^{i \alpha_f \gamma_5} \psi ##

Using the expansion above, we find that
e^{2 i \alpha_f \gamma_5} = \cos{2 \alpha_f} 1 + i \sin{2 \alpha_f} \gamma_5
and
e^{i \alpha_f \gamma_5} \gamma_5 e^{i \alpha_f \gamma_5} = \cos{2\alpha_f} \gamma_5 + i \sin{2\alpha_f} 1
so
e^{i \alpha_f \gamma_5} ( 1 + \gamma_5 ) e^{i \alpha_f \gamma_5} = e^{2 i \alpha_f} (1 + \gamma_5)
 
  • Like
Likes   Reactions: ChrisVer
Hi, thanks for clarifying... so I have to expland the whole exponential... [that is somewhat confusing, other times people expland it up to 1st order, other times they write the whole expansion].
 
Could someone help me with the metric he obtains at 23.4.10?
I have tried all possible ways but I haven't been able to reproduce his result... Here is my last try for solution...Obviously my results are not the same even for the easies ase of (44) component..

Used:

Tr[\tau_a \tau_b]= \frac{1}{2} \delta_{ab}
Tr[\tau_a \tau_b \tau_c]= \frac{i}{8} \epsilon_{bca}
Tr[\tau_a \tau_b \tau_c \tau_d]= \frac{1}{8} \delta_{ab} \delta_{cd} + \frac{1}{32} ( \delta_{cb} \delta_{ad} - \delta_{ca} \delta_{bd})

\begin{multline}

\\

g=\theta_4 1 +2 i \theta_i \tau_i \\

g^{-1}= \theta_4 1 -2 i \theta_i \tau_i \\

A_{ij}=g^{-1} (\partial_i g) g^{-1} (\partial_j g)\\

\end{multline}
\begin{equation}

\gamma_{ij}(\theta) = -\frac{1}{2} Tr A_{ij}

\end{equation}
So:
\begin{multline}

A_{44}=g^{-1} (\partial_4 g) g^{-1} (\partial_4 g)=g^{-1} g^{-1} 1= \theta_4^2 1- 4 \theta_a \theta_b \tau_a \tau_b-4i \theta_4 \theta_a \tau_a \\

\gamma_{44}= - \theta_4^2 + \theta^2 = 2 \theta^2 -1 \\

A_{4i}= g^{-1} (\partial_4 g) g^{-1} (\partial_i g)= g^{-1} g^{-1} 2i \tau_i=2i \theta_4^2 \tau_i - 8i \theta_a \theta_b \tau_a \tau_b \tau_i +8 \theta_4 \theta_a \tau_a \tau_i\\

\gamma_{4i}=-\frac{1}{2} \theta_a \theta_b \epsilon_{bia}-2 \theta_4 \theta_i = - 2 \theta_4 \theta_i = \gamma_{i4} \Big|_{checked}\\

A_{ij}=-4g^{-1} \tau_i g^{-1} \tau_j= -4 (\theta_4 1 -2 i \theta_a \tau_a)\tau_i (\theta_4 1 -2 i \theta_b \tau_b)\tau_j\\

\gamma_{ij}=-\frac{1}{4} (3 \theta^2 \delta_{ij}- 4\delta_{ij}+ 5 \theta_{i} \theta_{j})\\

\end{multline}
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
6
Views
3K