MHB Ivyrianne's question at Yahoo Answers regarding finding a circle

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Circle
Click For Summary
The discussion focuses on determining the equation of a circle with its center on the line 4x + 3y = 2 and tangent to the lines x + y + 4 = 0 and 7x - y + 4 = 0. The center of the circle is represented by the parameters h and k, which satisfy the equation 4h + 3k = 2. By applying the distance formula for the tangents, two cases for the center are derived: h = -4, k = 6 with radius r = 3√2, and h = 2, k = -2 with radius r = 2√2. The resulting equations of the two circles are (x + 4)² + (y - 6)² = 18 and (x - 2)² + (y + 2)² = 8. The analysis concludes with a graphical representation of the circles and tangent lines.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Determine the equation of a circle having its center on the line 4x+3y=2?

continuation: and tangent to the line x+y+4=0 and 7x-y+4=0

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello again ivyrianne,

Let's let the equation of the circle be:

$$(x-h)^2+(y-k)^2=r^2$$

We have 3 parameters to determine: $h,k,r$.

In order for the center of the circle to lie on the line $4x+3y=2$, we require:

(1) $$4h+3k=2$$

Now, let's rewrite the tangent lines in slope-intercept form:

a) $$y=-x-4$$

b) $$y=7x+4$$

If we have a point $\left(x_0,y_0 \right)$ and a line $y=mx+b$, then the perpendicular distance $d$ from the point to the line is given by:

$$d=\frac{\left|mx_0+b-y_0 \right|}{\sqrt{m^2+1}}$$

You may find derivations of this formula here:

http://www.mathhelpboards.com/f49/finding-distance-between-point-line-2952/

Using this formula for $d=r$ and the two tangent lines, we find that we require:

$$r=\frac{|-h-4-k|}{\sqrt{2}}=\frac{|7h+4-k|}{5\sqrt{2}}$$

Using the definition $$|x|\equiv\sqrt{x^2}$$, we may square through and write:

$$\left(5(h+k+4) \right)^2=(7h-k+4)^2$$

Solving (1) for $k$, we find:

$$k=\frac{2-4h}{3}$$

Substituting, there results:

$$\left(5\left(h+\frac{2-4h}{3}+4 \right) \right)^2=\left(7h-\frac{2-4h}{3}+4 \right)^2$$

Combining like terms, we find:

$$\left(\frac{5}{3}(h-14) \right)^2=\left(\frac{5}{3}(5h+2) \right)^2$$

Hence, we must have:

$$(h-14)^2-(5h+2)^2=0$$

$$(6h-12)(-4h-16)=0$$

$$-24(h-2)(h+4)=0$$

$$h=-4,\,2$$

Case 1: $$h=-4$$

$$k=\frac{2-4(-4)}{3}=6$$

$$r=\frac{\left|-(-4)-4-6 \right|}{\sqrt{2}}=3\sqrt{2}$$

Case 2: $$h=2$$

$$k=\frac{2-4(2)}{3}=-2$$

$$r=\frac{\left|-2-4-(-2) \right|}{\sqrt{2}}=2\sqrt{2}$$

Thus, the two possible circles are:

$$\left(x+4 \right)^2+\left(y-6 \right)^2=18$$

$$\left(x-2 \right)^2+\left(y+2 \right)^2=8$$

Here is a plot of the three lines and the two circles:

https://www.physicsforums.com/attachments/1008._xfImport
 

Attachments

  • ivyrianne2.jpg
    ivyrianne2.jpg
    13.8 KB · Views: 119
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K