MHB Johnathan's question at Yahoo Answers (Power series representation)

AI Thread Summary
The discussion focuses on finding the power series representation and radius of convergence for the function f(x) = 1/((2 + x)^2). The solution involves using the geometric series to derive the representation, starting with g(x) = 1/(x + 2) and differentiating it to find g'(x). The resulting power series for f(x) is presented as a summation involving alternating signs and coefficients based on n. The radius of convergence is established as |x| < 2, ensuring the series converges within this interval. This approach effectively addresses Johnathan's question regarding power series representation.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

am studying for a Cal 2 final and I am having a lot of trouble with this one example. Find the power series representation for the function and the radius of convergence. I understand the concepts of power series representations and radii of convergence but I am not sure how to go about solving this problem. f(x) = 1/((2 + x)^2)
I've thought about maybe a partial fraction, but that wouldn't work, then I've thought about making this into f(x) = 1/4 * 1/1-(x^2 + 4x) and setting the x^2 and 4x to my a[n] function but I am not sure if this is correct or how to do it.

Here is a link to the question:

Help with this power series representation? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Johnathan,

Using the geometric series: $$g(x)=\dfrac{1}{x+2}=\dfrac{1}{2}\dfrac{1}{1+ \frac{x}{2}}=\dfrac{1}{2}\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^nx^n}{2^n}\;(|x|<2)$$
Using the uniform convergence of the power series on all $[-\rho,\rho]\subset (-2,2)$: $$g'(x)=-\frac{1}{(x+2)^2}=\sum_{n=1}^{\infty}\frac{(-1)^nnx^{n-1}}{2^{n+1}}\;(|x|<2)$$ As a consequence, $$f(x)=\dfrac{1}{(x+2)^2}=\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n+1}nx^{n-1}}{2^{n+1}}\;(|x|<2)$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top