MHB Johnathan's question at Yahoo Answers (Power series representation)

Click For Summary
The discussion focuses on finding the power series representation and radius of convergence for the function f(x) = 1/((2 + x)^2). The solution involves using the geometric series to derive the representation, starting with g(x) = 1/(x + 2) and differentiating it to find g'(x). The resulting power series for f(x) is presented as a summation involving alternating signs and coefficients based on n. The radius of convergence is established as |x| < 2, ensuring the series converges within this interval. This approach effectively addresses Johnathan's question regarding power series representation.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

am studying for a Cal 2 final and I am having a lot of trouble with this one example. Find the power series representation for the function and the radius of convergence. I understand the concepts of power series representations and radii of convergence but I am not sure how to go about solving this problem. f(x) = 1/((2 + x)^2)
I've thought about maybe a partial fraction, but that wouldn't work, then I've thought about making this into f(x) = 1/4 * 1/1-(x^2 + 4x) and setting the x^2 and 4x to my a[n] function but I am not sure if this is correct or how to do it.

Here is a link to the question:

Help with this power series representation? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Johnathan,

Using the geometric series: $$g(x)=\dfrac{1}{x+2}=\dfrac{1}{2}\dfrac{1}{1+ \frac{x}{2}}=\dfrac{1}{2}\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^nx^n}{2^n}\;(|x|<2)$$
Using the uniform convergence of the power series on all $[-\rho,\rho]\subset (-2,2)$: $$g'(x)=-\frac{1}{(x+2)^2}=\sum_{n=1}^{\infty}\frac{(-1)^nnx^{n-1}}{2^{n+1}}\;(|x|<2)$$ As a consequence, $$f(x)=\dfrac{1}{(x+2)^2}=\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n+1}nx^{n-1}}{2^{n+1}}\;(|x|<2)$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 23 ·
Replies
23
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K