MHB Joint cumulative distribution of dependent variables

AI Thread Summary
The discussion revolves around calculating the joint cumulative distribution of dependent random variables $X, Y, Z$ uniformly distributed in $[0,1]$. The main focus is on determining the probability $\text{Pr}(X+Y+Z>\alpha \;\;\; \& \;\;\; X+Y\leq \alpha)$ and whether the proposed equations and integrals for computing this probability are correct. Participants discuss the convolution of probability density functions and the implications of the random variables being dependent versus independent. There is also clarification on the use of the uniform distribution and the appropriate scaling factor in the probability density function. The conversation highlights the complexities of working with dependent random variables in probability theory.
OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

The problem:
$X,Y,Z$ are random variables that are dependent and uniformly-distributed in $[0,1]$, and let $\alpha$ be a given number in $[0,1]$. I am asked to compute the following:

$\text{Pr}(X+Y+Z>\alpha \;\;\; \& \;\;\; X+Y\leq \alpha)$​

What I have so far

$f_{X+Y+Z,X+Y}(u,v)=f_{Z,X+Y}(u-v,v)=f_{Z}(u-v)\cdot f_{X+Y}(v)$

(1) Is the above equation correct? I think it stands for discrete RVs but not quite sure for continuous RVs... If it is true, is the following integral correct to compute the desired probability?

$\int _{\alpha} ^{+\infty} \int _{-\infty} ^{\alpha} f_{X+Y+Z,X+Y}(u,v) du\; dv = \int _{\alpha} ^{+\infty} \int _{-\infty} ^{\alpha} f_{Z}(u-v)f_{X+Y}(v) du\; dv=
\int _{\alpha} ^{+\infty} \alpha f_{X+Y}(v) dv$​
 
Physics news on Phys.org
I've not checked carefully the details but it follows from a substitution. I think we can simplify the last integral.
 
:confused:
 
OhMyMarkov said:
Hello everyone!

The problem:
$X,Y,Z$ are random variables that are dependent and uniformly-distributed in $[0,1]$, and let $\alpha$ be a given number in $[0,1]$. I am asked to compute the following:

$\text{Pr}(X+Y+Z>\alpha \;\;\; \& \;\;\; X+Y\leq \alpha)$​

What I have so far

$f_{X+Y+Z,X+Y}(u,v)=f_{Z,X+Y}(u-v,v)=f_{Z}(u-v)\cdot f_{X+Y}(v)$

(1) Is the above equation correct? I think it stands for discrete RVs but not quite sure for continuous RVs... If it is true, is the following integral correct to compute the desired probability?

$\int _{\alpha} ^{+\infty} \int _{-\infty} ^{\alpha} f_{X+Y+Z,X+Y}(u,v) du\; dv = \int _{\alpha} ^{+\infty} \int _{-\infty} ^{\alpha} f_{Z}(u-v)f_{X+Y}(v) du\; dv=
\int _{\alpha} ^{+\infty} \alpha f_{X+Y}(v) dv$​

If X, Y and Z are non negative r.v., then if X + Y + Z > a then X + Y < a so that what You have to find is the p.d.f. of the r.v. T = X + Y + Z. X, Y and Z are uniformely distributed in [0,1], so that their p.d.f. and its L-transform is... $\displaystyle f(t) = \mathcal {U} (t) - \mathcal{U} (t-1) \implies F(s) = \frac{1 - e^{-s}}{s}\ (1)$

The p.d.f. of T is the convolution of three p.d.f. ...

$\displaystyle f_{T} (t) = f(t)*f(t)*f(t) = \mathcal{L}^{-1}\{\frac{1 - 3\ e^{- s} + 3\ e^{- 2\ s} - e^{- 3\ s}}{s^{3}}\} = \frac{1}{6}\ \{ t^{2}\ \mathcal U(t) - 3\ (t-1)^{2}\ \mathcal U (t-1) + 3\ (t-2)^{2}\ \mathcal {U} (t-2) - (t-3)^{2}\ \mathcal{U} (t-3)\}\ (2)$

Now is simply...

$\displaystyle P \{ X + Y + Z > a\} = 1 - \int_{0}^{a} f_{T}(t)\ dt\ (3)$ Kind regards $\chi$ $\sigma$
 
OhMyMarkov said:
:confused:

There is just a minor typo in the initial post (you meant the random variables are independent). Now I think it's good. Did you compute a density of $X+Y$.
 
chisigma said:
If X, Y and Z are non negative r.v., then if X + Y + Z > a then X + Y < a so that what You have to find is the p.d.f. of the r.v. T = X + Y + Z. X, Y and Z are uniformely distributed in [0,1], so that their p.d.f. and its L-transform is... $\displaystyle f(t) = \mathcal {U} (t) - \mathcal{U} (t-1) \implies F(s) = \frac{1 - e^{-s}}{s}\ (1)$

The p.d.f. of T is the convolution of three p.d.f. ...

$\displaystyle f_{T} (t) = f(t)*f(t)*f(t) = \mathcal{L}^{-1}\{\frac{1 - 3\ e^{- s} + 3\ e^{- 2\ s} - e^{- 3\ s}}{s^{3}}\} = \frac{1}{6}\ \{ t^{2}\ \mathcal U(t) - 3\ (t-1)^{2}\ \mathcal U (t-1) + 3\ (t-2)^{2}\ \mathcal {U} (t-2) - (t-3)^{2}\ \mathcal{U} (t-3)\}\ (2)$

Now is simply...

$\displaystyle P \{ X + Y + Z > a\} = 1 - \int_{0}^{a} f_{T}(t)\ dt\ (3)$ Kind regards $\chi$ $\sigma$
Hello,
What is $\mathcal U(t)-\mathcal U(t-1)$? Is it a Probability density function of uniform distribution at t=1. Have you used here heavyside function concept? Why did you multiply (2) by $\frac16$ ? It should be multiplied by $\frac12$. My guess is X,Y,Z are dependent random variables, therefore, you multiplied (2) by $\frac16 i.e. (\frac12*\frac13)$ Am i correct?
 
Last edited:
Back
Top