MHB Joint cumulative distribution of dependent variables

OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

The problem:
$X,Y,Z$ are random variables that are dependent and uniformly-distributed in $[0,1]$, and let $\alpha$ be a given number in $[0,1]$. I am asked to compute the following:

$\text{Pr}(X+Y+Z>\alpha \;\;\; \& \;\;\; X+Y\leq \alpha)$​

What I have so far

$f_{X+Y+Z,X+Y}(u,v)=f_{Z,X+Y}(u-v,v)=f_{Z}(u-v)\cdot f_{X+Y}(v)$

(1) Is the above equation correct? I think it stands for discrete RVs but not quite sure for continuous RVs... If it is true, is the following integral correct to compute the desired probability?

$\int _{\alpha} ^{+\infty} \int _{-\infty} ^{\alpha} f_{X+Y+Z,X+Y}(u,v) du\; dv = \int _{\alpha} ^{+\infty} \int _{-\infty} ^{\alpha} f_{Z}(u-v)f_{X+Y}(v) du\; dv=
\int _{\alpha} ^{+\infty} \alpha f_{X+Y}(v) dv$​
 
Physics news on Phys.org
I've not checked carefully the details but it follows from a substitution. I think we can simplify the last integral.
 
:confused:
 
OhMyMarkov said:
Hello everyone!

The problem:
$X,Y,Z$ are random variables that are dependent and uniformly-distributed in $[0,1]$, and let $\alpha$ be a given number in $[0,1]$. I am asked to compute the following:

$\text{Pr}(X+Y+Z>\alpha \;\;\; \& \;\;\; X+Y\leq \alpha)$​

What I have so far

$f_{X+Y+Z,X+Y}(u,v)=f_{Z,X+Y}(u-v,v)=f_{Z}(u-v)\cdot f_{X+Y}(v)$

(1) Is the above equation correct? I think it stands for discrete RVs but not quite sure for continuous RVs... If it is true, is the following integral correct to compute the desired probability?

$\int _{\alpha} ^{+\infty} \int _{-\infty} ^{\alpha} f_{X+Y+Z,X+Y}(u,v) du\; dv = \int _{\alpha} ^{+\infty} \int _{-\infty} ^{\alpha} f_{Z}(u-v)f_{X+Y}(v) du\; dv=
\int _{\alpha} ^{+\infty} \alpha f_{X+Y}(v) dv$​

If X, Y and Z are non negative r.v., then if X + Y + Z > a then X + Y < a so that what You have to find is the p.d.f. of the r.v. T = X + Y + Z. X, Y and Z are uniformely distributed in [0,1], so that their p.d.f. and its L-transform is... $\displaystyle f(t) = \mathcal {U} (t) - \mathcal{U} (t-1) \implies F(s) = \frac{1 - e^{-s}}{s}\ (1)$

The p.d.f. of T is the convolution of three p.d.f. ...

$\displaystyle f_{T} (t) = f(t)*f(t)*f(t) = \mathcal{L}^{-1}\{\frac{1 - 3\ e^{- s} + 3\ e^{- 2\ s} - e^{- 3\ s}}{s^{3}}\} = \frac{1}{6}\ \{ t^{2}\ \mathcal U(t) - 3\ (t-1)^{2}\ \mathcal U (t-1) + 3\ (t-2)^{2}\ \mathcal {U} (t-2) - (t-3)^{2}\ \mathcal{U} (t-3)\}\ (2)$

Now is simply...

$\displaystyle P \{ X + Y + Z > a\} = 1 - \int_{0}^{a} f_{T}(t)\ dt\ (3)$ Kind regards $\chi$ $\sigma$
 
OhMyMarkov said:
:confused:

There is just a minor typo in the initial post (you meant the random variables are independent). Now I think it's good. Did you compute a density of $X+Y$.
 
chisigma said:
If X, Y and Z are non negative r.v., then if X + Y + Z > a then X + Y < a so that what You have to find is the p.d.f. of the r.v. T = X + Y + Z. X, Y and Z are uniformely distributed in [0,1], so that their p.d.f. and its L-transform is... $\displaystyle f(t) = \mathcal {U} (t) - \mathcal{U} (t-1) \implies F(s) = \frac{1 - e^{-s}}{s}\ (1)$

The p.d.f. of T is the convolution of three p.d.f. ...

$\displaystyle f_{T} (t) = f(t)*f(t)*f(t) = \mathcal{L}^{-1}\{\frac{1 - 3\ e^{- s} + 3\ e^{- 2\ s} - e^{- 3\ s}}{s^{3}}\} = \frac{1}{6}\ \{ t^{2}\ \mathcal U(t) - 3\ (t-1)^{2}\ \mathcal U (t-1) + 3\ (t-2)^{2}\ \mathcal {U} (t-2) - (t-3)^{2}\ \mathcal{U} (t-3)\}\ (2)$

Now is simply...

$\displaystyle P \{ X + Y + Z > a\} = 1 - \int_{0}^{a} f_{T}(t)\ dt\ (3)$ Kind regards $\chi$ $\sigma$
Hello,
What is $\mathcal U(t)-\mathcal U(t-1)$? Is it a Probability density function of uniform distribution at t=1. Have you used here heavyside function concept? Why did you multiply (2) by $\frac16$ ? It should be multiplied by $\frac12$. My guess is X,Y,Z are dependent random variables, therefore, you multiplied (2) by $\frac16 i.e. (\frac12*\frac13)$ Am i correct?
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top