MHB Jordan-Holder Theorem for Modules .... .... Another Two Questions ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.2: Noetherian and Artinian Modules and need some further help to fully understand the proof of part of Proposition 4.2.16 (Jordan-Holder) ... ...

Proposition 4.2.16 reads as follows:
View attachment 8243
https://www.physicsforums.com/attachments/8244
Question 1Near the middle of the above proof (top of page 116) we read the following:

"... ... so $$M_1 \cap N_1$$ is a maximal submodule of $$M_1$$ and $$N_1$$, since $$M/M_1$$ and $$M/N_1$$ are simple modules. ... ... "Can someone please explain why $$M/M_1$$ and $$M/N_1$$ being simple modules implies that $$M_1 \cap N_1$$ is a maximal submodule of $$M_1$$ and $$N_1$$ ... ... ?( ***NOTE*** : I can see that $$M/M_1$$ and $$M/N_1$$ being simple modules implies that $$M_1$$ and $$N_1$$ are maximal ... but how does that imply that $$M_1 \cap N_1$$ is a maximal submodule of $$M_1$$ and $$N_1$$ ... ... ? ... ... )
Question 2Near the middle of the above proof (top of page 116) we read the following:

"... ... Using Proposition 4.2.14 we see that $$M $$ is artinian and noetherian and Proposition 4.2.5 indicates that $$M_1 \cap N_1$$ is artinian and noetherian ... ... "Can someone please explain how/why Proposition 4.2.5 indicates that $$M_1 \cap N_1$$ is artinian and noetherian ... ...
Help will be appreciated ...

Peter
====================================================================================
The above post refers to Propositions 4.2.14 and 4.2.5 ... so I am providing text of the statements of the propositions as follows:View attachment 8245https://www.physicsforums.com/attachments/8246
Hope access to the above helps ...

Peter
 
Last edited:
Physics news on Phys.org
(4.3) and (4.4) are compostion series of $M$, by definition $M_i$ is a maximal submodules of $M_{i-1}$, that is $ M_{i-1}/M_i$ is simple.
Therefore $M/M_1$ and $M/N_1$ are simple because $M = M_0 = N_0$.

In (4.7), since $M/M_1$ is simple, the isomorphic $N_1/(M_1 \cap N_1)$ must be simple, therefore $(M_1 \cap N_1)$ is maximal in $N_1$, idem $(M_1 \cap N_1)$ is maximal in $M_1$, using (4.8).

$(M_1 \cap N_1)$ is a submodule of $M$, and prop.4.2.5 says that submodules of noetherian modules are noetherian, idem arterian.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...