Kaska's question at Yahoo Answers involving related rates

  • Context: MHB 
  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
Click For Summary
SUMMARY

The discussion focuses on solving a calculus related rates problem involving a lighthouse and a revolving spotlight. The spotlight rotates at 12 revolutions per minute (24 rad/min), and the goal is to determine the rate at which the spotlight moves along the shoreline when it is 11 feet from the nearest point of the lighthouse. The correct formula derived is dx/dt = (24π/170)(170² + 11²) ft/min, resulting in 348252π/85 ft/min. This approach eliminates the need for trigonometric functions, streamlining the solution process.

PREREQUISITES
  • Understanding of calculus concepts, specifically related rates
  • Familiarity with trigonometric functions, particularly tangent and secant
  • Knowledge of differentiation with respect to time
  • Ability to apply the Pythagorean theorem in problem-solving
NEXT STEPS
  • Study related rates problems in calculus textbooks
  • Learn about the application of the Pythagorean theorem in real-world scenarios
  • Explore differentiation techniques in calculus
  • Practice solving problems involving angular velocity and linear motion
USEFUL FOR

Students studying calculus, educators teaching related rates, and anyone interested in applying mathematical concepts to real-world problems involving motion and angles.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus related rates question, Help please!?

A lighthouse is fixed 170 feet from a straight shoreline. A spotlight revolves at a rate of 12 revolutions per minute, (24 rad/min ), shining a spot along the shoreline as it spins. At what rate is the spot moving when it is along the shoreline 11 feet from the shoreline point closest to the lighthouse?

I got the answer: 4080π(sec(0.0646)^2) but it seems to be wrong, I don't understand what I am doing wrong, any help?

Here is a link to the question:

Calculus related rates question, Help please!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello Kaska,

Let's generalize a bit and derive a formula we can then plug our data into.

The first thing I would do is draw a diagram:

View attachment 618

As we can see, we may state:

$\displaystyle \tan(\theta)=\frac{x}{y}$

Now, let's differentiate with respect to time $t$, bearing in mind that while $x$ is a function of $t$, $y$ is a constant.

$\displaystyle \sec^2(\theta)\cdot\frac{d\theta}{dt}=\frac{1}{y} \cdot\frac{dx}{dt}$

Since we are being asked to find the speed of the spot, whose position is $x$, we want to solve for $\dfrac{dx}{dt}$:

$\displaystyle \frac{dx}{dt}=y\sec^2(\theta) \cdot\frac{d\theta}{dt}$

Let's let the angular velocity be given by:

$\omega=\dfrac{d\theta}{dt}$

and from the diagram and the Pythagorean theorem, we find:

$\displaystyle \sec^2(\theta)=\frac{x^2+y^2}{y^2}$

Hence, we have:

$\displaystyle \frac{dx}{dt}=\frac{\omega}{y}(y^2+x^2)$

Now we may plug in the given data:

$\displaystyle \omega=24\pi\frac{1}{\text{min}},\,y=170\text{ ft},\,x=11\text{ ft}$

$\displaystyle \frac{dx}{dt}=\frac{24\pi}{170}(170^2+11^2)\,\frac{\text{ft}}{\text{min}}=\frac{348252\pi}{85}\, \frac{\text{ft}}{\text{min}}$

This is equivalent to the answer you obtained (accounting for rounding), however we have done away with the need to use a trig. function.
 

Attachments

  • kaska.jpg
    kaska.jpg
    2.4 KB · Views: 149

Similar threads

  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
9K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
6K