Kernel and image of a matrix A

Click For Summary
The kernel of a matrix A, associated with a linear transformation, is defined as the nullspace of A, which consists of solutions to the equation Ax=0. The image of A, also known as the range, is represented by the column space of A, which is the span of its columns. To clarify, the kernel and image should be discussed in the context of linear transformations rather than solely in relation to the matrix itself. The dimension of the image, or rank of A, indicates the number of linearly independent columns, while the dimension theorem relates the number of solutions to Ax=0 to the rank. Understanding these concepts is crucial for a comprehensive grasp of linear algebra.
Niles
Messages
1,834
Reaction score
0
[SOLVED] Kernel and image of a matrix A

Homework Statement



If I have a matrix A, then the kernel of A is the solution to Ax=0?

The image of A is just the vectors that span the column space?

I have looked through my book and searched the WWW, but I can't find the answer to these questions anywhere. I hope you guys can help.

Thanks in advance.
 
Physics news on Phys.org
Loosely interpreted, I think you got it right, but you should include the fact that A is the standard matrix associated with the linear transformation. This is a question on linear transformations, right?

Your first statement should read "The kernel of the linear transformation T, which is associated with standard matrix A, is the nullspace of A, which the the solution set of Ax=0".

Your second statement should read "The set of images of the linear transformation T, which is associated with the standard matrix A, also known as the range of T, is given by the column space of A"

I know it seems pedantic but sometimes confusion is caused when we use imprecise language in mathematics.
 
Suppose A is a mxn matrix. View A as a linear transformation that left-multiplies a column vector in R^n to a column vector in R^m. Since A:R^n->R^m is now a linear transformation (prove it!), then by definition ker(A) is the solution space to Ax=0.

Now im(A) is a subspace of R^m (prove it!). What set generates this subspace? Well take the n standard basis vectors of R^n. Then the image of these n vectors by the linear transformation A are simply the columns of the matrix A, right? So im(A) is the span of the columns of A (since the n standard basis vectors form a basis of R^n), i.e. the column space of A.

Furthermore, suppose rankA (the dimension of im(A)) = r. Then by the dimension theorem, we have the number of linearly independent solutions to Ax=0 to be n-r, which you've probably learned in high school but now see the proof of. Also, rankA, which is the dimension of im(A)=column space of A, is now the number of linearly independent columns of A (and also the number of linearly independent rows of A).
 
Last edited:
Thanks to you both - it's so great that you guys can help.

So it doesn't make sense talking about the image and kernel of a matrix alone (and not associating it with a linear transformation)?
 
That's right.

ker: Hom(V,W) -> V
im: Hom(V,W) -> W

where Hom(V,W) is the set of all linear transformations from a vector space V to a vector space W. So ker, and I am do not act on matrices.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
15K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K