Kinetic Energy of two positive charges flying apart

Click For Summary
SUMMARY

The discussion focuses on the kinetic energy dynamics of two positive charges moving apart in an electric field. It establishes that when both charges are in motion, the potential energy is shared between them, and the kinetic energy can be calculated using Lagrangian mechanics or by analyzing the system as a one-body problem with reduced mass. The equations governing their motion are derived, emphasizing the importance of symmetry and conservation of energy in determining their velocities as they separate.

PREREQUISITES
  • Understanding of electric potential energy and kinetic energy principles
  • Familiarity with Lagrangian mechanics
  • Knowledge of Newton's second law and differential equations
  • Concept of reduced mass in multi-body systems
NEXT STEPS
  • Study Lagrangian mechanics in detail to apply it to multi-particle systems
  • Learn about the concept of reduced mass and its applications in physics
  • Explore conservation of energy principles in electric fields
  • Investigate the mathematical solutions to systems of differential equations in classical mechanics
USEFUL FOR

Physicists, students of classical mechanics, and anyone interested in understanding the dynamics of charged particles in electric fields.

UMath1
Messages
361
Reaction score
9
Usually when we calculate the kinetic energy acquired by a positive charge as it moves in the direction of the electric field produced by another positive charge, we assume that the source charge remains stationary and so the loss in potential energy for the moving charge is equal to its gain in kinetic energy.

But what if both charges are allowed to move? Is the original potential energy shared between the two charges? Would you use half of the original potential energy for each of the two charges?
 
Physics news on Phys.org
In the lab frame:
You can work out the potential energy between the initial and final positions - this will tell you the total change in kinetic energy.
The symmetry dictates how the kinetic energy is shared.
You can also work the problem by brute force using Lagrangian mechanics.
A lot depends on what, exactly, you are trying to calculate.
 
It's not hard with two charges. If they are identical charges then you can just accelerate both of them by the same amount. If not, you can convert it into a 1 body problem using the reduced mass.
 
For N particles, positions ##\vec r_i## Newton's second law for the jth particle is $$k\sum_{i\neq j}^N \frac{q_iq_j}{|\vec r_j-\vec r_i|^3}(\vec r_j-\vec r_i) = m_j\frac{d^2}{dt^2}(\vec r_j-\vec r_i)$$
... the result is a system of N differential equations which you can solve for each ##r_i(t)## by the usual methods.

For the case of two identical particles, ##q_1=q_2=q## and ##m_1=m_2=m## this simplifies to:
$$\frac{kq^2}{|\vec r_2-\vec r_1|^3}(\vec r_2-\vec r_1) = m\frac{d^2}{dt^2}(\vec r_2-\vec r_1)\\
\frac{kq^2}{|\vec r_1-\vec r_2|^3}(\vec r_1-\vec r_2) = m\frac{d^2}{dt^2}(\vec r_1-\vec r_2)\\
\vec r_1(0)=\vec r_{01}, \vec r_2(0)=\vec r_{02}, \frac{d}{dt} \vec r_1(0) = \frac{d}{dt} \vec r_2(0) = 0$$

It is usually easier to change coordinates so that one axis (usually z) lies along ##\vec r_2-\vec r_1## with the origin half way between the particles.
This way the particles start at ##\pm z_0## given by ##z_0 = \frac{1}{2}|\vec r_1-\vec r_2|##.

The equations become:
$$\frac{kq^2}{(z_2-z_1)^2}\hat k = m\frac{d^2z_2}{dt^2}\hat k\\
\frac{kq^2}{(z_2-z_1)^2}\hat k = -m\frac{d^2z_1}{dt^2}\hat k\\
z_1(0)=-z_0, z_2(0)=z_0, \dot z_1=\dot z_2 = 0$$ ... something like that.

But if the particles start out stationary at ##\pm z_0## at some time, and they are later at ##\pm z_1## so that ##z_1>z_0##, then, ceteris paribus, we can work out their velocities by conservation of energy:
$$v^2 = \frac{kq^2}{m}\left(\frac{1}{z_0}-\frac{1}{z_1}\right)\\ \vec v_2=v\hat k = -\vec v_1$$
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K