Kinetic energy transfer from shockwave to secondary body

AI Thread Summary
The discussion focuses on calculating the work done by a shockwave on a secondary body, considering factors like pressure, force, density, distance, and velocity. Participants emphasize the importance of dimensional analysis to relate these variables, questioning how to combine them correctly to derive velocity. The conversation highlights the need to express velocity in terms of pressure, density, and distance using MLT notation. A method is proposed to set up equations based on dimensional analysis to solve for unknowns. Overall, the thread illustrates the complexities of kinetic energy transfer and the mathematical relationships involved.
KataruZ98
Messages
27
Reaction score
3
Homework Statement
I have an object A possessing a known mass of 10kg and density of 1,000kg/m^3 exposed to a shockwave in a way the latter impacts A over an area of one square meter at a right angle. The pressure of the shockwave at the point of contact is 10PSI.
Relevant Equations
Kinetic energy transferred by the shockwave to body A
I would guess that by multiplying the pressure exerted by the shockwave on the body, and then the resulting force - here ~69 Newtons - per the distance the shockwave passed through when traversing body A, I could get the work done but I’m not sure if it’s that easy and whether or not I should consider the shockwave accelerating when passing from a less dense to denser medium.
 
Physics news on Phys.org
Thinking of it per unit area (doubling the area should yield the same velocity gain) we have a pressure, a density, a distance and a velocity. What does dimensional analysis say?
 
Hm, I’m kinda lost honestly. Unfortunately I’m not well versed.
 
KataruZ98 said:
Hm, I’m kinda lost honestly. Unfortunately I’m not well versed.
Are you unfamiliar with dimensional analysis? Look it up.
It uses M for mass, L for length, T for time,…
Pressure is ML-1T-2
Density ML-3
Distance L
Velocity LT-1
How can you combine the first three, raising each to some power and multiplying the terms together, to make the last?
 
  • Like
Likes member 731016 and KataruZ98
haruspex said:
Are you unfamiliar with dimensional analysis? Look it up.
It uses M for mass, L for length, T for time,…
Pressure is ML-1T-2
Density ML-3
Distance L
Velocity LT-1
How can you combine the first three, raising each to some power and multiplying the terms together, to make the last?
Well I would say I should divide density by the product of pressure and distance - though this leaves a T-2 as denominator.
 
Last edited by a moderator:
KataruZ98 said:
Well I would say I should divide density by the product of pressure and distance - though this leaves a T-2 as denominator.
Then that cannot be the answer.
The method is to let the answer be of the form velocity=pressure adensitybdistancec. In MLT notation that becomes ##LT^{-1}=(ML^{-1}T^{-2})^a(ML^{-3})^bL^c##.
Three equations, three unknowns.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top