Hello,(adsbygoogle = window.adsbygoogle || []).push({});

My question is on the Klein-Gordon equation and it's relation to the continuity equation, so for a Klein-Gordon equation & continuity equation of the following form, I have attained the following probability density and probability current relations (although not normalised correctly? If that's the correct term):

[tex]-\frac{\partial^2 }{\partial t^2}\psi +\bigtriangledown ^2\psi-m^2\psi=0 \: ,\: \frac{\partial }{\partial t}\rho +\mathbf{\bigtriangledown } \cdot \mathbf{j}=0[/tex]

[tex]\rho=i(\psi^{*}\dot{\psi}-\psi\dot{\psi^{*}})\,,\; \mathbf{j} =i(\psi\bigtriangledown \psi^{*}-\psi^{*}\bigtriangledown\psi)[/tex]

We then impose conservation of probability by making the time derivative of the probability equal to zero, and the following manipulation of this derivative is shown below:

[tex]\frac{\partial P}{\partial t}=\int_{V}\frac{\partial \rho}{\partial t}\, d^3x=-\int_{V}\bigtriangledown\cdot \mathbf{j}\, d^3x=-\oint_{S}\mathbf{j}\cdot d\mathbf{s}=0[/tex]

This above equation makes use of the divergence theorem in the last pair. This is true if j=0, but does j in general need to be equal to zero? I thought 'j' would vary around the surface and so the integration of all 'j' at each part on the surface would equal zero but not necessarily all 'j' =0.

To be honest I'm quite unsure at what 'j' represents in terms of probability!

Can anyone explain this?

Thanks,

SK

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Klein-Gordon Equation & Continuity Equation

**Physics Forums | Science Articles, Homework Help, Discussion**