Koopman–von Neumann mechanics references

AI Thread Summary
The discussion centers on the Koopman–von Neumann (KvN) mechanics and its relevance in classical mechanics, particularly within Hilbert spaces. Participants highlight the lack of dedicated textbooks on KvN mechanics but recommend resources such as Wikipedia and specific arXiv papers for further study. The KvN formalism is noted to be beneficial for understanding probabilities in physics, though its application to definite trajectories is less clear. There is ongoing debate in the physics community regarding the potential insights KvN may provide into quantum mechanics. Overall, the conversation emphasizes the need for a solid mathematical background to grasp the concepts effectively.
user_12345
Messages
5
Reaction score
5
Hello everyone, I am new here. I am studying physics as a self-taught student.
I have been studying classical Lagrangian and Hamiltonian mechanics from Goldstein's book and have read that there is an additional formulation of classical mechanics in Hilbert spaces.
Is it worth studying? Do you know of any easy textbooks for learning classical mechanics in Hilbert spaces?
Thank you and sorry for my English.
 
Physics news on Phys.org
Last edited:
  • Like
Likes Peter Morgan, hutchphd, Paul Colby and 1 other person
I think that that Koopman–von Neumann theory is needed if only you come to it from some another physics topics not from classical mech. I think that a considerable non mechanical background is needed.
 
  • Like
Likes Peter Morgan and user_12345
Well, the basics of the KvN formalism are quite simple for anyone that is familiar with the mathematical structure of QM.
The usefulness of the KvN is perhaps harder to justify outside ergodic theory. And ergodic theory is, well, hard indeed.
 
Last edited:
  • Like
Likes user_12345 and Peter Morgan
there is no need to study the whole KvN formalism to turn to ergodic theory, just what the Koopman operator is
 
  • Like
Likes Peter Morgan
andresB said:
I don't think there is a textbook on the subject, but, luckily, the wikipedia page on KvN mechanics is quite complete and well referenced. The following are quite readable

https://arxiv.org/abs/quant-ph/0301172
http://frankwilczek.com/2015/koopmanVonNeumann02.pdf

And I can't avoid mentioning my own work
https://arxiv.org/abs/2004.08661
https://arxiv.org/abs/2105.13882
Weird that I've hardly been on PF for I think over a year and this morning I drop by to find there's a mention of Koopman. I second AndresB's mention of the Wikipedia page and of the Frank Wilczek notes.

Can I also not avoid mentioning my own work? "An algebraic approach to Koopman classical mechanics":smile: Some of that may be accessible, some of it will not, but in any case I can take this opportunity to thank AndresB for citing it in his 2105.13882. I fear, however, that also neither of his papers can be thought elementary.

In the year since "An algebraic approach to Koopman classical mechanics" was published in Annals of Physics, I've come to think that Koopman's Hilbert space formalism is very useful indeed if you want to work with probabilities, but if you want to work with definite trajectories not so much. If you do want to work with probabilities, Koopman's Hilbert space formalism can model statistics out of experiments as capably as any other Hilbert space formalism.

The physics literature is working through the question of how much or whether Koopman can help us understand quantum mechanics: if it's decided that it can, then a good textbook account of Koopman's formalism will be soon forthcoming, otherwise it won't. One snippet of gossip, from March 29th on Twitter:
WilcekOnTwitter.jpg

You'll be unsurprised to hear that Wilczek didn't answer me.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
Replies
5
Views
2K
Replies
46
Views
3K
Replies
39
Views
7K
Replies
8
Views
4K
Back
Top