I Kronecker Delta: Order of Indices Explained

  • I
  • Thread starter Thread starter Jim Lai
  • Start date Start date
  • Tags Tags
    Delta Indices
Jim Lai
Messages
1
Reaction score
1
Hi everyone,

I am a new member and would like to ask a naive simple (my guess) question.

I am reading Weinberg’s Gravitation and Cosmology. On page 59, Eq. 2.12.10 therein reads
$$
\begin{aligned}
\left[\sigma_{\alpha \beta}\right]_{\gamma \delta}{}^{\varepsilon \zeta}
&=\eta_{\alpha \gamma} \delta_{\beta}{}^{\varepsilon} \delta^{\zeta}{}_{\delta}
-\eta_{\beta \gamma} \delta_{\alpha}{}^{\varepsilon} \delta^{\zeta}{}_{\delta}\\
&+\eta_{\alpha \delta} \delta_{\beta}{}^{\zeta} \delta^{\varepsilon}{}_{\gamma}
-\eta_{\beta \delta} \delta_{\alpha}{}^{\zeta} \delta^{\varepsilon}{}_{\gamma}
\end{aligned}
$$

I wonder if \delta_{\beta}{}^{\varepsilon} is equal to \delta^{\varepsilon}{}_{\beta}. Would anyone enlighten me?

Regards,
Jim Lai
 
Last edited:
Physics news on Phys.org
Yes, those are equal. Both are equal to one if ##\varepsilon = \beta## and zero otherwise. Generally there is therefore no need to worry about the horizontal positioning of the indices on the ##\delta##.
 
  • Like
Likes dextercioby, vanhees71 and Jim Lai
That's because the Kronecker symbol can be read as the mixed components of the "metric" (it's rather a pseudometric) tensor,
$${\delta_{\alpha}}^{\beta}=g_{\alpha \gamma} g^{\gamma \beta} = g_{\gamma \alpha} g^{\gamma \beta} = {\delta^{\beta}}_{\alpha}.$$
 
vanhees71 said:
That's because the Kronecker symbol can be read as the mixed components of the "metric" (it's rather a pseudometric) tensor,
$${\delta_{\alpha}}^{\beta}=g_{\alpha \gamma} g^{\gamma \beta} = g_{\gamma \alpha} g^{\gamma \beta} = {\delta^{\beta}}_{\alpha}.$$
I thought about writing that, but then I thought ”… of any non-degenerate (0,2) tensor and its inverse really … or wait, it is just the identity map on the tangent space vs the identity map on the cotangent space …” and then I realized I knew too much and left it there 😂
 
  • Like
  • Haha
Likes Jim Lai, dextercioby and vanhees71
The Kronecker delta is a symmetric tensor, so interchanging the order of the indices doesn't matter. One often sees people omitting the order of indices for symmetric tensors in general, i.e. they're write ##
\sigma^a_b##. Since for symmetric tensors ##\sigma^a{}_b = \sigma^b{}_a##, the order doesn't matter. In general though, the order of indices does matter, and specifying the order of indices is required. For an anti-symmetric tensor ##\sigma^a{}_b## = -##\sigma^b{}_a##, for example.
 
pervect said:
The Kronecker delta is a symmetric tensor, so interchanging the order of the indices doesn't matter. One often sees people omitting the order of indices for symmetric tensors in general, i.e. they're write ##
\sigma^a_b##.
This is incorrect. The Kronecker delta is a (1,1) tensor and if therefore really does not make much sense to discuss symmetries as it only has one index of each type. In a Euclidean space in Cartesian coordinates, it is common to write the metric tensor as ##\delta_{ij}## with both indices down, but this is particular for that coordinate system.

pervect said:
Since for symmetric tensors ##\sigma^a{}_b = \sigma^b{}_a##, the order doesn't matter. In general though, the order of indices does matter, and specifying the order of indices is required. For an anti-symmetric tensor ##\sigma^a{}_b## = -##\sigma^b{}_a##, for example.
None of those relations are viable as they mix covariant and contravariant indices (or, in abstract index notation, mixes vector and dual vector arguments).
 
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
Back
Top