I Kronecker Delta: Order of Indices Explained

  • I
  • Thread starter Thread starter Jim Lai
  • Start date Start date
  • Tags Tags
    Delta Indices
Jim Lai
Messages
1
Reaction score
1
Hi everyone,

I am a new member and would like to ask a naive simple (my guess) question.

I am reading Weinberg’s Gravitation and Cosmology. On page 59, Eq. 2.12.10 therein reads
$$
\begin{aligned}
\left[\sigma_{\alpha \beta}\right]_{\gamma \delta}{}^{\varepsilon \zeta}
&=\eta_{\alpha \gamma} \delta_{\beta}{}^{\varepsilon} \delta^{\zeta}{}_{\delta}
-\eta_{\beta \gamma} \delta_{\alpha}{}^{\varepsilon} \delta^{\zeta}{}_{\delta}\\
&+\eta_{\alpha \delta} \delta_{\beta}{}^{\zeta} \delta^{\varepsilon}{}_{\gamma}
-\eta_{\beta \delta} \delta_{\alpha}{}^{\zeta} \delta^{\varepsilon}{}_{\gamma}
\end{aligned}
$$

I wonder if \delta_{\beta}{}^{\varepsilon} is equal to \delta^{\varepsilon}{}_{\beta}. Would anyone enlighten me?

Regards,
Jim Lai
 
Last edited:
Physics news on Phys.org
Yes, those are equal. Both are equal to one if ##\varepsilon = \beta## and zero otherwise. Generally there is therefore no need to worry about the horizontal positioning of the indices on the ##\delta##.
 
  • Like
Likes dextercioby, vanhees71 and Jim Lai
That's because the Kronecker symbol can be read as the mixed components of the "metric" (it's rather a pseudometric) tensor,
$${\delta_{\alpha}}^{\beta}=g_{\alpha \gamma} g^{\gamma \beta} = g_{\gamma \alpha} g^{\gamma \beta} = {\delta^{\beta}}_{\alpha}.$$
 
vanhees71 said:
That's because the Kronecker symbol can be read as the mixed components of the "metric" (it's rather a pseudometric) tensor,
$${\delta_{\alpha}}^{\beta}=g_{\alpha \gamma} g^{\gamma \beta} = g_{\gamma \alpha} g^{\gamma \beta} = {\delta^{\beta}}_{\alpha}.$$
I thought about writing that, but then I thought ”… of any non-degenerate (0,2) tensor and its inverse really … or wait, it is just the identity map on the tangent space vs the identity map on the cotangent space …” and then I realized I knew too much and left it there 😂
 
  • Like
  • Haha
Likes Jim Lai, dextercioby and vanhees71
The Kronecker delta is a symmetric tensor, so interchanging the order of the indices doesn't matter. One often sees people omitting the order of indices for symmetric tensors in general, i.e. they're write ##
\sigma^a_b##. Since for symmetric tensors ##\sigma^a{}_b = \sigma^b{}_a##, the order doesn't matter. In general though, the order of indices does matter, and specifying the order of indices is required. For an anti-symmetric tensor ##\sigma^a{}_b## = -##\sigma^b{}_a##, for example.
 
pervect said:
The Kronecker delta is a symmetric tensor, so interchanging the order of the indices doesn't matter. One often sees people omitting the order of indices for symmetric tensors in general, i.e. they're write ##
\sigma^a_b##.
This is incorrect. The Kronecker delta is a (1,1) tensor and if therefore really does not make much sense to discuss symmetries as it only has one index of each type. In a Euclidean space in Cartesian coordinates, it is common to write the metric tensor as ##\delta_{ij}## with both indices down, but this is particular for that coordinate system.

pervect said:
Since for symmetric tensors ##\sigma^a{}_b = \sigma^b{}_a##, the order doesn't matter. In general though, the order of indices does matter, and specifying the order of indices is required. For an anti-symmetric tensor ##\sigma^a{}_b## = -##\sigma^b{}_a##, for example.
None of those relations are viable as they mix covariant and contravariant indices (or, in abstract index notation, mixes vector and dual vector arguments).
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Back
Top