- #1
Frank Castle
- 580
- 23
I've been working my way through Peskin and Schroeder and am currently on the sub-section about how spinors transform under Lorentz transformation. As I understand it, under a Lorentz transformation, a spinor ##\psi## transforms as $$\psi\rightarrow S(\Lambda)\psi$$ where $$S(\Lambda)=\exp\left(-\frac{i}{2}\omega_{\mu\nu}\Sigma^{\mu\nu}\right)$$ with $$\Sigma^{\mu\nu}=\frac{i}{4}\left[\gamma^{\mu},\,\gamma^{\nu}\right]=-\Sigma^{\nu\mu}$$ Then, in the Weyl representation we have that $$\Sigma^{0i}=-\frac{i}{2}\left(\begin{matrix}\sigma^{i}&&0\\ 0&&-\sigma^{i}\end{matrix}\right)$$ and $$\Sigma^{ij}=\frac{i}{2}\varepsilon^{ijk}\left(\begin{matrix}\sigma^{k}&&0\\ 0&&\sigma^{k}\end{matrix}\right)$$ Given this, what confuses me is how one ends up with the following left-handed and right-handed transformations: $$S(\Lambda)_{L}=\exp\left(-\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{2}+i\frac{\mathbf{\theta}\cdot\mathbf{\sigma}}{2}\right) \\ \\ S(\Lambda)_{R}=\exp\left(\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{2}+i\frac{\mathbf{\theta}\cdot\mathbf{\sigma}}{2}\right)$$ Where does the additional ##i## come from in the spatial rotations term?
I have read from other sources, that the parameters ##\omega_{\mu\nu}## are defined such that ##\omega_{0i}=\beta_{i}## and ##\omega_{ij}=\varepsilon_{ijk}\theta^{k}##, which are the boost and rotation parameters respectively. Given these, however, I can't arrive at the above expressions. For example, for ##S(\Lambda)_{L}## I obtain
$$S(\Lambda)_{L}=\exp\left(-\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{4}+\varepsilon_{ijk}\varepsilon^{ijl}\frac{\theta^{k}\sigma^{l}}{4}\right)=\exp\left(-\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{4}+\frac{\mathbf{\theta}\cdot\mathbf{\sigma}}{2}\right)$$ where I have used that ##\varepsilon_{ijk}\varepsilon^{ijl}=2\delta_{kl}##.
Would someone be able to explain this to me as I'm really stuck on this point at the moment.
I have read from other sources, that the parameters ##\omega_{\mu\nu}## are defined such that ##\omega_{0i}=\beta_{i}## and ##\omega_{ij}=\varepsilon_{ijk}\theta^{k}##, which are the boost and rotation parameters respectively. Given these, however, I can't arrive at the above expressions. For example, for ##S(\Lambda)_{L}## I obtain
$$S(\Lambda)_{L}=\exp\left(-\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{4}+\varepsilon_{ijk}\varepsilon^{ijl}\frac{\theta^{k}\sigma^{l}}{4}\right)=\exp\left(-\frac{\mathbf{\beta}\cdot\mathbf{\sigma}}{4}+\frac{\mathbf{\theta}\cdot\mathbf{\sigma}}{2}\right)$$ where I have used that ##\varepsilon_{ijk}\varepsilon^{ijl}=2\delta_{kl}##.
Would someone be able to explain this to me as I'm really stuck on this point at the moment.