I Label propagation equation: what are the terms?

  • I
  • Thread starter Thread starter Master1022
  • Start date Start date
  • Tags Tags
    Propagation Terms
AI Thread Summary
The discussion centers on clarifying the terms in the label propagation equation, specifically equation (2.15). Participants agree that ##f## is a vector, ##S## is a matrix, and ##\alpha## is a scalar, while there is uncertainty about whether ##y## is a vector or scalar. It is suggested that if ##y## were a scalar, it would imply a uniform value across all nodes, which seems unlikely given the context. The consensus leans towards ##y## being a vector, as this aligns with the need for matrix-vector multiplication in the equation. Overall, the terms can be defined as functions of vertices, with ##f## and ##y## represented as vectors over the set of vertices.
Master1022
Messages
590
Reaction score
116
TL;DR Summary
What terms in the equation (from the linked paper) are vectors or scalars?
Hi,

This is a simple question that I just wanted to clarify. I was reading the following paper on label propagation: HERE and I can't understand whether the terms are vectors or scalars in one of the equations - specifically, equation (2.15) shown in the image below.
Screen Shot 2022-05-03 at 11.02.57 AM.png


My understanding:
- ##f## is a vector
- ## S ## is a matrix
- ## \alpha ## is a scalar
- I am not too sure about ##y##: could be a vector or a scalar.
- ##\nu##: I am not too sure, but I think it could be referring to a specific node? That is, ## f(\nu) ## could be the value of the vector ## f## at node ## \nu ##.
- ## y ##: I am not sure, but I think it is a vector (see reasoning below).

Case is ## y ## is a scalar:
- That would make sense mathematically, but does that mean that we are using the same scalar ## y ## the equation for all nodes. That is, it doesn't matter what node ## \nu ## we are considering, we will always have the same ## y ## scalar in the equation? However, there is another equation above (shown below) which uses y as follows. This suggests that ##y## is a vector because then we have matrix-vector multiplication:

Screen Shot 2022-05-03 at 11.03.14 AM.png

Case if ## y ## is a vector:
- It could be a vector (as suggested by image above), but then we are adding a vector ## (1 - \alpha) y ## to a scalar ## \alpha S f ## is a vector, and we are extracted the value at a certain node ## \nu ##, so it is a scalar. Therefore, it seems unlikely that ## y ## is a vector unless my interpretation of ## \nu ## is incorrect.Apologies if this is sparse with information. I didn't want to rewrite the paper in this post and I am unsure of some of the definitions of variables in there. Any help would be greatly appreciated.
 
Mathematics news on Phys.org
##f## and ##y## are functions of ##v##, where ##v## designates a vertex, ##S## an operator, ##\alpha## a positive scalar.

For a given set of vertices ##V##, it is possible to write ##f## and ##y## as a vector over the set of vertices, and ##S## as a matrix.

Note that ##y## can't be a scalar otherwise eq. (2.15) would represent the sum of disparate elements.
 
DrClaude said:
##f## and ##y## are functions of ##v##, where ##v## designates a vertex, ##S## an operator, ##\alpha## a positive scalar.

For a given set of vertices ##V##, it is possible to write ##f## and ##y## as a vector over the set of vertices, and ##S## as a matrix.

Note that ##y## can't be a scalar otherwise eq. (2.15) would represent the sum of disparate elements.
Many thanks for the response!

So would ## f( \nu ) ## be a vector instead of just referring to the entry of vector ## f## corresponding to ## \nu ##?
 
Master1022 said:
So would ## f( \nu ) ## be a vector instead of just referring to the entry of vector ## f## corresponding to ## \nu ##?
I don't understand your question.

##f(v)## is a function, but if you have a discrete set ##V## of vertices ##v##, then ##f(v)## over ##V## can be written as a vector.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top