I Label propagation equation: what are the terms?

  • I
  • Thread starter Thread starter Master1022
  • Start date Start date
  • Tags Tags
    Propagation Terms
Master1022
Messages
590
Reaction score
116
TL;DR Summary
What terms in the equation (from the linked paper) are vectors or scalars?
Hi,

This is a simple question that I just wanted to clarify. I was reading the following paper on label propagation: HERE and I can't understand whether the terms are vectors or scalars in one of the equations - specifically, equation (2.15) shown in the image below.
Screen Shot 2022-05-03 at 11.02.57 AM.png


My understanding:
- ##f## is a vector
- ## S ## is a matrix
- ## \alpha ## is a scalar
- I am not too sure about ##y##: could be a vector or a scalar.
- ##\nu##: I am not too sure, but I think it could be referring to a specific node? That is, ## f(\nu) ## could be the value of the vector ## f## at node ## \nu ##.
- ## y ##: I am not sure, but I think it is a vector (see reasoning below).

Case is ## y ## is a scalar:
- That would make sense mathematically, but does that mean that we are using the same scalar ## y ## the equation for all nodes. That is, it doesn't matter what node ## \nu ## we are considering, we will always have the same ## y ## scalar in the equation? However, there is another equation above (shown below) which uses y as follows. This suggests that ##y## is a vector because then we have matrix-vector multiplication:

Screen Shot 2022-05-03 at 11.03.14 AM.png

Case if ## y ## is a vector:
- It could be a vector (as suggested by image above), but then we are adding a vector ## (1 - \alpha) y ## to a scalar ## \alpha S f ## is a vector, and we are extracted the value at a certain node ## \nu ##, so it is a scalar. Therefore, it seems unlikely that ## y ## is a vector unless my interpretation of ## \nu ## is incorrect.Apologies if this is sparse with information. I didn't want to rewrite the paper in this post and I am unsure of some of the definitions of variables in there. Any help would be greatly appreciated.
 
Mathematics news on Phys.org
##f## and ##y## are functions of ##v##, where ##v## designates a vertex, ##S## an operator, ##\alpha## a positive scalar.

For a given set of vertices ##V##, it is possible to write ##f## and ##y## as a vector over the set of vertices, and ##S## as a matrix.

Note that ##y## can't be a scalar otherwise eq. (2.15) would represent the sum of disparate elements.
 
DrClaude said:
##f## and ##y## are functions of ##v##, where ##v## designates a vertex, ##S## an operator, ##\alpha## a positive scalar.

For a given set of vertices ##V##, it is possible to write ##f## and ##y## as a vector over the set of vertices, and ##S## as a matrix.

Note that ##y## can't be a scalar otherwise eq. (2.15) would represent the sum of disparate elements.
Many thanks for the response!

So would ## f( \nu ) ## be a vector instead of just referring to the entry of vector ## f## corresponding to ## \nu ##?
 
Master1022 said:
So would ## f( \nu ) ## be a vector instead of just referring to the entry of vector ## f## corresponding to ## \nu ##?
I don't understand your question.

##f(v)## is a function, but if you have a discrete set ##V## of vertices ##v##, then ##f(v)## over ##V## can be written as a vector.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top