Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Ladder operators for real scalar field

  1. Aug 9, 2015 #1
    Puting a minus in front of the momentum in the field expansion gives

    ##\phi \left( {\bf{x}} \right) = \int {{d^3}\tilde p} \left( {{a_{\bf{p}}}{e^{i{\bf{p}} \cdot {\bf{x}}}} + a_{\bf{p}}^ + {e^{ - i{\bf{p}} \cdot {\bf{x}}}}} \right){\rm{ }}\phi \left( {\bf{x}} \right) = \int {{d^3}\tilde p} \left( {{a_{ - {\bf{p}}}}{e^{ - i{\bf{p}} \cdot {\bf{x}}}} + a_{ - {\bf{p}}}^ + {e^{i{\bf{p}} \cdot {\bf{x}}}}} \right)##.

    Is this implise that

    ##a_{ - {\bf{p}}}^ + = {a_{{\bf{p}}{\rm{ }}}}## ##{a_{ - {\bf{p}}}} = a_{\bf{p}}^ + ## ?

    Becuse if so

    \pi \left( {\bf{x}} \right) = - i\int {{{{d^3}p} \over {{{\left( {2\pi } \right)}^3}}}\sqrt {{{{\omega _{\bf{p}}}} \over 2}} \left( {{a_{\bf{p}}}{e^{i{\bf{p}} \cdot {\bf{x}}}} - a_{\bf{p}}^ + {e^{ - i{\bf{p}} \cdot {\bf{x}}}}} \right)} = \cr
    = - i\int {{{{d^3}p} \over {{{\left( {2\pi } \right)}^3}}}\sqrt {{{{\omega _{\bf{p}}}} \over 2}} \left( {{a_{\bf{p}}}{e^{i{\bf{p}} \cdot {\bf{x}}}} - a_{ - {\bf{p}}}^{}{e^{ - i{\bf{p}} \cdot {\bf{x}}}}} \right) = } \cr
    = - i\int {{{{d^3}p} \over {{{\left( {2\pi } \right)}^3}}}\sqrt {{{{\omega _{\bf{p}}}} \over 2}} \left( {{a_{\bf{p}}}{e^{i{\bf{p}} \cdot {\bf{x}}}} - a_{\bf{p}}^{}{e^{i{\bf{p}} \cdot {\bf{x}}}}} \right)} = 0 \cr} ##

    Wich is obviosly wrong, Where is the mistake?
  2. jcsd
  3. Aug 9, 2015 #2


    User Avatar
    2017 Award

    Staff: Mentor

    No, why should it?
    The first term on the left side gets transformed to the first one on the right side, and the second term gets transformed to the second one.
    Just a transformation p -> -p, no physics involved in that step. The integral is over the whole space anyway so integration limits don't change.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook