MHB Lagrangian Mechanics: Solving $\mathcal{L}(X,x,\dot{X},\dot{x})$ for 2 Masses

Dustinsfl
Messages
2,217
Reaction score
5
Write down the Lagrangian $\mathcal{L}(x_1,x_2,\dot{x}_1,\dot{x}_2)$ for two particles of equal masses, $m_1 = m_2 = m$, confined to the $x$ axis and connected by a spring with potential energy $U = \frac{1}{2}kx^2$. [Here $x$ is the extension of the spring, $x = (x_1 - x_2 - \ell)$ where $\ell$ is the spring's unstretched length, and I assume that mass 1 remains to the right of mass 2 at all times.]

The Lagrangian, $\mathcal{L} = T - U$, is the kinetic minus the potential energy.
\begin{alignat*}{3}
\mathcal{L} & = & T - U\\
& = & \frac{1}{2}m\left(\dot{x}_1^2 + \dot{x}_2^2\right) - \frac{1}{2}k(x_1 - x_2 - \ell)^2
\end{alignat*}

Rewrite $\mathcal{L}$ in terms of the new variables $X = \frac{1}{2}(x_1 + x_2)$ (the CM position) and $x$ (the extension), and write down the two Lagrange equations for $X$ and $x$.

The solution has:
Let $x = x_1 - x_2 - \ell$
Where did this piece come from (below). I see that adding them together produces $X$.
\begin{alignat}{3}
x_1 & = & X + \frac{x}{2} + \frac{\ell}{2}\\
x_2 & = & X - \frac{x}{2} - \frac{\ell}{2}
\end{alignat}
 
Mathematics news on Phys.org
You have two equations:
\begin{align*}
X&= \frac{1}{2}\,(x_{1}+x_{2})\\
x&= x_{1}-x_{2}-\ell.
\end{align*}
In order to see how $L$ is using these new variables, you must solve for the original variables $x_{1}$ and $x_{2}$, and then plug those expressions into the $L$ that you know. So the two equations at the bottom of your post are simply using standard solving methods (elimination, substitution) to write the old variables in terms of the new.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top