Land Yachts -- Why don't cars and trucks also use sails?

  • Thread starter Thread starter JLT
  • Start date Start date
  • Tags Tags
    Cars
Click For Summary
Land yacht racing has sparked discussions about the potential for using sails on vehicles like semi-trucks and trains to enhance energy efficiency. However, practical challenges arise, such as highway bridge height restrictions and the difficulty of maneuvering in narrow lanes. Additionally, the concept of using air-drag or flaps to assist with braking on long downhill stretches has been explored, but concerns about safety and effectiveness persist. While some believe that utilizing wind energy could be beneficial, the realities of traffic flow and vehicle dynamics complicate the feasibility of such innovations. Overall, the idea remains intriguing but faces significant practical hurdles.
  • #31
anorlunda said:
Sorry, that is a popular myth. Sailboats and sailing iceboats go faster than the wind all the time. Just watch this week's news about America's Cup racing in NZ. Those sailboats go up to 50 mph in a 15 mph wind.
I'm aware of these possibilities, however, only in a very specific direction to the wind. Roads tend not to line themselves up with the direction of the prevailing winds, as it happens!

At sea/on a beach, one can select the direction arbitrarily. The issue about being on roads is that they tend to constrain you along a particular heading.
 
Engineering news on Phys.org
  • #32
anorlunda said:
Sorry, that is a popular myth. Sailboats and sailing iceboats go faster than the wind all the time. Just watch this week's news about America's Cup racing in NZ. Those sailboats go up to 50 mph in a 15 mph wind.

Um as a sailor with decades experience and placements in both state and national titles, I assure you that you are mistaken, entertainment commentary is not accurate to reality. It is only very high performance boat designs that can sail faster than the wind and even then, only on certain headings. Efficient sail boats can not sail closer to the true wind than about 40 degrees due to their lift/drag efficiency. It looks like they sail closer than this because of the addition of their speed vector and the true wind vector. I am not aware of any sail boat that can exceed wind speed when sailing up wind. In fact, this is the slowest point of sailing as only a small fraction of the sails reaction is driving the boat forward while most of it is trying to tip the boat over.

No sailing boat can sail directly downwind faster than the wind.

Efficient, faster than wind sailboats tack downwind. So that their speed vector plus true wind vector produce an apparent wind directions change to the front quarter of the boat. They are sailing so fast that the angle between true and apparent wind is greater than 90 deg. Boats that are efficient enough to achieve this and more are known a apparent wind boats and they can indeed sail faster than the wind across or at a downwind angle but they certainly cannot sail faster than the wind in any random direction and no sailing boat can sail between about -40 to +40 degrees against the wind, we all have to tack upwind.

Add the fact that many roads go through cuttings, corridors through tall forests, buildings, tunnels etc which all block and channel the wind and considering the speed vector of cars changing apparent wind to almost always be practically directly ahead, there are almost no situations in which a sail could be employed effectively on a car or truck. Then of course, there is the considerable hazard that a mast on a car presents both for road safety and infrastructure.

I suppose, some of these crucial terms will be unfamiliar, but I have far too limited space to fully explain the physics of sailing. Look them up if you wish to understand these points.
 
Last edited:
  • #33
Kenwstr said:
I suppose, some of these crucial terms will be unfamiliar, but I have far too limited space to fully explain the physics of sailing. Look them up if you wish to understand these points.
See post #2 in this thread.
 
  • #34
Kenwstr said:
no sailing boat can sail between about -40 to +40 degrees against the wind, we all have to tack upwind.
I would say "very few sailing boats". For instance, the Etchells 22 website claims a 70 degree tacking angle, and I'm pretty sure the AC70 boats could do even better.
 
  • #35
Tacking on the highway is frowned on, incidentally, so moving ever more from the original question.

I did see some design for one of those directionless vertically rotating sails. But, again, it is not merely getting the direction right on the road but also the speed. I suggest sails deliver poorly on both dimensions of one's vehicle's 'desired' velocity vector.

Hint; even canal boats don't use sails ... answer why not for canal boats and probably a similar answer for use on roads.
 
  • Like
Likes russ_watters and Lnewqban
  • #36
cmb said:
Tacking on the highway is frowned on...
It sure is. I once tacked on a highway - a boat highway - and the 300 passenger party boat coming up behind me was not amused.

We got so close the passengers on the bow rail could have dropped a penny and hit me on the head.

(I'm very lucky I wasn't fined for sailing in an 'all vessels must be under power' channel.)
 
  • #37
This problem has been well thought out in the past:
 

Attachments

  • Sailing thru traffic.jpg
    Sailing thru traffic.jpg
    47.9 KB · Views: 175
  • Like
Likes cmb
  • #38
Kenwstr said:
I am not aware of any sail boat that can exceed wind speed when sailing up wind.

No sailing boat can sail directly downwind faster than the wind.

There is a land yacht called Blackbird that does both of these. How it works that the wind drives a rotor, and the rotor drives the wheels directly via a mechanical linkage. Technically this is still powered by only wind, and does not use stored mechanical or electrical power, and is therefore a sail, though traditionalists might not accept it.

https://en.wikipedia.org/wiki/Blackbird_(land_yacht)

I don't see any reason such a mechanism won't work on a boat, but the engineering challenge of implementation is of course much harder.
 
  • Like
Likes rbelli1 and russ_watters
  • #39
" No sailing boat can sail directly downwind faster than the wind. "
ardnog said:
There is a land yacht called Blackbird that does both of these.
You might want to think about that a bit more and consider motion through a body of air, independently of the ground it is traveling on.

What is possible is that a very small cross wind can be utilised to provide the tractive force directly downwind. But ultimately the vehicle would have to travel with some degree of cross wind and never 'directly' downwind.

Just consider what forces (assuming the rolling wheels and surface are 'perfect' and non-lossy) one is trying to overcome by pushing a vehicle along at speed? It's the air resistance, of course. If one can generate more power from the air resistance than the power that this air resistance generates, hey, maybe we can invent a perpetual motion machine there using a wind tunnel and some clever engineering.
 
  • #40
cmb said:
You might want to think about that a bit more and consider motion through a body of air, independently of the ground it is traveling on.

What is possible is that a very small cross wind can be utilised to provide the tractive force directly downwind. But ultimately the vehicle would have to travel with some degree of cross wind and never 'directly' downwind.

Just consider what forces (assuming the rolling wheels and surface are 'perfect' and non-lossy) one is trying to overcome by pushing a vehicle along at speed? It's the air resistance, of course. If one can generate more power from the air resistance than the power that this air resistance generates, hey, maybe we can invent a perpetual motion machine there using a wind tunnel and some clever engineering.

Think about what a gearbox does.

No disrespect intended, but you're claiming the wikipedia entry for the Blackbird land yacht is wrong. Are you absolutely sure?
 
  • #41
ardnog said:
Think about what a gearbox does.

No disrespect intended, but you're claiming the wikipedia entry for the Blackbird land yacht is wrong. Are you absolutely sure?
I have to think so.

From whence does the gearbox derive its input power if not from the wind when traveling into wind? If it can generate more power from the wind it is driving through to push it through that air, then it is a perpetual motion machine.

I simply cannot see how this can be done without SOME crosswind.
 
  • #42
cmb said:
I have to think so.

From whence does the gearbox derive its input power if not from the wind when traveling into wind? If it can generate more power from the wind it is driving through to push it through that air, then it is a perpetual motion machine.

I simply cannot see how this can be done without SOME crosswind.
This is a topic we've discussed before on PF. It's a surprising result, but it's true. The key is that the relative wind drives the wheels. When sailing dwftw, the relative wind is opposite the direction of motion (making them hard to start). A neat little trick.
 
  • #43
russ_watters said:
This is a topic we've discussed before on PF. It's a surprising result, but it's true. The key is that the relative wind drives the wheels. When sailing dwftw, the relative wind is opposite the direction of motion (making them hard to start). A neat little trick.
What does 'drive the wheels' mean? What are the wheels driving against?
 
  • #44
cmb said:
What does 'drive the wheels' mean? What are the wheels driving against?
There is a transmission system. The turbine drives the wheels, the wheels drive the vehicle across the ground.
 
Last edited:
  • #45
russ_watters said:
The propeller drives the wheels, the wheels drive the vehicle across the ground.
The technical term for the wind driven rotor is actually turbine.
Turbine blades differ from propeller blades in that, for an asymmetrical airfoil section, the twist along the blade is reversed.
 
  • Like
  • Informative
Likes Klystron and russ_watters
  • #46
Baluncore said:
The technical term for the wind driven rotor is actually turbine.
Yes, corrected.
 
  • Like
Likes Baluncore
  • #47
russ_watters said:
There is a transmission system. The turbine drives the wheels, the wheels drive the vehicle across the ground.
Yes, yes, of course! What I mean is 'driving against what?'. What 'force' is it driving against that it has to overcome?
 
  • #48
cmb said:
Yes, yes, of course! What I mean is 'driving against what?'. What 'force' is it driving against that it has to overcome?
Drag and rolling resistance.

I suspect you have a point you're getting at but I'm not really up for heading down a quiz rabbit hole. Please make it, but also please read up on dwfttw first so you don't inadvertently step in the hole.
 
  • #49
russ_watters said:
Drag and rolling resistance.

I suspect you have a point you're getting at but I'm not really up for heading down a quiz rabbit hole. Please make it, but also please read up on dwftw first so you don't inadvertently step in the hole.
OK, sure, I call this out as BS.

The power generated driving 'directly' into headwind cannot overcome the power needed to drive directly into headwind.

I emphasise 'directly'.

It just cannot be done.

I am surprised this is not stamped on, on a site like this.

The photograph shown on the wiki page shows a cross wind. It is not 'directly' into headwind.

I would not want to stab at a guess of how much cross wind is needed, it might indeed be very little. Close enough perhaps that a wet finger in the air says 'yep' he's going into headwind.

But just please explain to me, in basic physics, how a vehicle that is within a body of air can gain energy from the air it is pushing through?

Seriously? I mean, next we will have propeller aircraft that can 'generate' power by speeding up! The propeller at the front can become a generator!

If I am wrong then it's because I need to see some extraordinary evidence for this extraordinary claim, and I haven't.
 
  • #50
cmb said:
The power generated driving 'directly' into headwind cannot overcome the power needed to drive directly into headwind.
Yes it can, because the turbine rotates due to airfoil lift, but there is also the perpendicular airfoil drag component that must be overcome. In order to rotate the turbine, the lift must be perpendicular to the wind direction.

If the turbine blade lift to drag ratio is greater than unity, then the lift perpendicular to the wind will overcome the drag component into the wind.
 
  • Like
Likes russ_watters
  • #51
cmb said:
OK, sure, I call this out as BS...
Ok, well, it's not, and you really should read-up on it and try to learn how it works, then ask specific questions about the parts you don't understand. The search term on PF is "dwfttw" (the second "t" is sometimes omitted) and of course there's plenty you can get from a google search as well. I don't think this is the right thread for a starting-from-scratch walkthrough of the concept (and one should always try to brush up before jumping into it anyway).
 
  • #52
sandy stone said:
I would say "very few sailing boats". For instance, the Etchells 22 website claims a 70 degree tacking angle, and I'm pretty sure the AC70 boats could do even better.

Very rough calculation: AC 75 are claimed to be 4x faster than the wind. Inverse tan (1/4) is 14 degrees, for the effective wind the boat is sailing into.
 
  • #53
If made light enough, the instrumentation package for Blackbird mentioned in the article could measure lift throughout the test run; perhaps strain gauges associated with the lower chassis and each wheel?

There should be some ground effect from the wind motion under the chassis and horizontal parts of the fairings coupled, as @Baluncore states, with substantial lift from the turbine assembly. As lift and drag vary with forward motion and turbine rotation, not to mention variations in wind direction, I wonder how the operators stabilize and steer the vehicle?

I suppose the turbine spin produces some minor gyroscopic stability but have not thought this through. Would like to see some data from a model in a 'ground effect' wind tunnel with horizontal steel plates simulating the Earth such as the 12' at NASA Ames. Models usually remain rigidly mounted throughout the test; so, are not free to tip over.

Unable to roller skate or skateboard as a child, I mounted skate wheels on wooden boards with different sails to excellent effect on windy days sans rider. I experimented with propellers from powered gliders replacing the sails and one vertical turbine without success as a land vehicle. Guess the blade pitch was incorrect.
 
  • #54
Klystron said:
There should be some ground effect from the wind motion under the chassis and horizontal parts of the fairings coupled, as @Baluncore states, with substantial lift from the turbine assembly. As lift and drag vary with forward motion and turbine rotation, not to mention variations in wind direction, I wonder how the operators stabilize and steer the vehicle?
The vehicle appears to be steered by the front wheel, probably by both feet on rudder bar pedals.

The azimuth of the turbine will also be controlled, probably with the right hand, maybe using a hand wheel. The turbine has only two blades so it will not be gyroscopically difficult to change the turbine azimuth.

The lift I referred to is that of the turbine blade airfoil profile. The rotating blades are moving across the wind direction, driven by blade lift. Only the smaller drag component is in the wind direction.
 
  • Informative
Likes Klystron
  • #55
russ_watters said:
Ok, well, it's not, and you really should read-up on it and try to learn how it works, then ask specific questions about the parts you don't understand. The search term on PF is "dwfttw" (the second "t" is sometimes omitted) and of course there's plenty you can get from a google search as well. I don't think this is the right thread for a starting-from-scratch walkthrough of the concept (and one should always try to brush up before jumping into it anyway).
So, why don't we have aircraft with self-propelling propellers? Instead of drive to the ground they can go through a gearbox to a second pushing propeller at the back that runs quicker than the front one?

It's like someone saying you can go read up on cold fusion if you don't believe it. All very convincing. Whole conventions run by established scientists on the subject.

Extraordinary claims .. etc ...
 
  • #56
Baluncore said:
Yes it can, because the turbine rotates due to airfoil lift, but there is also the perpendicular airfoil drag component that must be overcome. In order to rotate the turbine, the lift must be perpendicular to the wind direction.

If the turbine blade lift to drag ratio is greater than unity, then the lift perpendicular to the wind will overcome the drag component into the wind.
I'd like to see some accurately recorded data showing such an experiment.

I can see a photo on wiki but it appears to show a small cross-wind to the vehicle being tested.
 
  • #57
Comparisons to cold fusion are very unfair. Cold fusion is not supported by current physics, and attempts to reproduce it don't work. On the other hand, plans for these land carts are available (there is a detailed building guide on the inventor of Blackbird's youtube), others have built them, and physicists can explain how they work, if you ask nicely and don't call them (and by implication also the land yacht racing judges) crackpots.
 
  • #58
ardnog said:
Comparisons to cold fusion are very unfair. Cold fusion is not supported by current physics, and attempts to reproduce it don't work. On the other hand, plans for these land carts are available (there is a detailed building guide on the inventor of Blackbird's youtube), others have built them, and physicists can explain how they work, if you ask nicely and don't call them (and by implication also the land yacht racing judges) crackpots.
OK, but I have asked nicely why no-one's made an airplane propeller along the same principles.
 
  • #59
cmb said:
OK, but I have asked nicely why no-one's made an airplane propeller along the same principles.
That is simply because you don't understand the principles. Your fixation with the ridiculous precludes a rational approach.

Given a source of energy, birds and insects can fly through the air, while fish can swim in water. Neither of those can extract energy from the one stationary fluid in which they are totally immersed.

The requirement to extract energy is that there is a solid reference, the ground and one moving fluid, such as water or air, or that there are two separate fluids with a differential velocity, such as the wind blowing over water.
 
  • Like
  • Informative
Likes Averagesupernova and Klystron
  • #60
The physics of fluids fascinates and strains understanding perhaps because we live immersed in air and originally evolved in and require water. One must remain skeptical yet open to new concepts.

This thread concerns land yachts but consider how a helicopter rises and flies under rapidly rotating rotors with pitch controlled by the pilot. In the event of engine failure the same rotors can be tilted to auto-gyro and safely land a heavy un-aerodynamic vehicle. Tilt-rotor and ducted-fan aircraft often appear to defy gravity and common sense translating from vertical to horizontal flight regimes to hover like hummingbirds. These latter examples require significant energy expenditure but hint at the potential of unaided flight.

I had read about Bauer and similar experimental land vehicles but using an adjustable turbine-prop in place of sails leaves me with much food for thought.
 

Similar threads

Replies
81
Views
11K
  • · Replies 19 ·
Replies
19
Views
12K
Replies
17
Views
17K
  • · Replies 9 ·
Replies
9
Views
15K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
16
Views
10K
  • · Replies 6 ·
Replies
6
Views
5K