- #1
- 11,308
- 8,638
It can be depressing to reject so many ideas for power generation or bulk storage of energy. That makes it refreshing to read today's news about a new method that IMO sounds 100% credible in their claims, and that has a potential scalability that could far exceed pumped hydro.
http://fortune.com/2016/05/22/energy-storing-train-nevada/
The main reason that I find this easy to believe is that electric locomotives with regenerative braking systems have been in use for many years. No new technology needs to be researched or developed. The locomotive designs have already been refined over the years. Even their efficiency and cost claims can be backed by the records of extensive real-life experience, not just calculations or laboratory experiments.
The number of suitable locations for this scheme are far more than suitable pumped hydro locations. That's why I think they could really scale it big.
If I ever learn the names of the engineers who first proposed this, I would like to nominate them for awards.
http://fortune.com/2016/05/22/energy-storing-train-nevada/
In April, the Nevada Bureau of Land Management granted environmental approval and a land lease to Advanced Rail Energy Storage (ARES), a startup with an energy storage solution that’s both novel and old-school. Apparently taking some inspiration from the myth of Sisyphus, ARES proposes to use excess off-peak energy to push a heavily-loaded train up a grade. Then, when the grid needs that energy back, the cars will be rolled back down the slope—but in a significant improvement on the myth, that return trip will generate energy and put it back on the grid.
ARES’ solution is related to an already common kind of energy storage known as pumped-storage hydropower, which pumps water uphill, then captures the power of its downhill flow as needed. The obvious advantage of the ARES approach is that it’s more adaptable, without the need for lots of water. ARES has also said its solution costs about half as much as other storage technologies, and claims 80% efficiency in energy reclamation, similar to or slightly above typical hydro-storage efficiency.
The main reason that I find this easy to believe is that electric locomotives with regenerative braking systems have been in use for many years. No new technology needs to be researched or developed. The locomotive designs have already been refined over the years. Even their efficiency and cost claims can be backed by the records of extensive real-life experience, not just calculations or laboratory experiments.
The number of suitable locations for this scheme are far more than suitable pumped hydro locations. That's why I think they could really scale it big.
If I ever learn the names of the engineers who first proposed this, I would like to nominate them for awards.