Landau Energy Spectrum in the non-relativistic limit

desperate_student
Messages
1
Reaction score
0
Homework Statement
In the relativistic landau energy spectrum for a particle in a magnetic field, how does the m^2 term simplify down to p^2/2m in the non-relativistic limit?
Relevant Equations
Non-Relativistic: E=p^2/2m +w(n+1/2), n=0,1,2....
Relativistic: E= sqrt(p^2 +m^2+2mw(n+1/2)) n=0,1,2....
At non-relativistic limit, m>>p so let p=0
At non-relativistic limit m>>w,
So factorise out m^2 from the square root to get:
m*sqrt(1+2w(n+1/2)/m)
Taylor expansion identity for sqrt(1+x) for small x gives:
E=m+w(n+1/2) but it should equal E=p^2/2m +w(n+1/2), so how does m transform into p^2/2m?
 
Physics news on Phys.org
desperate_student said:
At non-relativistic limit, m>>p so let p=0
If you set p=0, it should be obvious that you will not get an equation that depends on p. So try it again without doing that.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top