MHB Laplace equation polar where does the ln constant come from

Dustinsfl
Messages
2,217
Reaction score
5
So we have the two ODE solutions are the cosine/sine and $r^n$ since it was a Cauchy Euler type.
For the steady state, the solution is just a constant since it has to have period 2pi. But with $r^n$, how with lambda equal to zero does $\ln r$ come into play?

If my question is hard to follow, go here http://web.mit.edu/6.013_book/www/chapter5/5.7.html

Look at (9) and you will see ln r. I don't see we get that.
 
Last edited:
Physics news on Phys.org
dwsmith said:
So we have the two ODE solutions are the cosine/sine and $r^n$ since it was a Cauchy Euler type.
For the steady state, the solution is just a constant since it has to have period 2pi. But with $r^n$, how with lambda equal to zero does $\ln r$ come into play?

If my question is hard to follow, go here http://web.mit.edu/6.013_book/www/chapter5/5.7.html

Look at (9) and you will see ln r. I don't see we get that.

Note that when \(m=0\) we have,

\[r\frac{d}{dr}\left(\frac{1}{r}\frac{dR}{dr}\right)=0\]

Now try to find \(R\).
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K