MHB Laplace general soln (x-x_0)^2 + (y-y_0)^2\leq R^2

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    General Laplace
Dustinsfl
Messages
2,217
Reaction score
5
I don't see how this $\rho = \frac{r}{R}$ helps.Let $(x_0,y_0)$ be a point in the plane, and suppose $u(x,y)$ is continuous for $(x - x_0)^2 + (y - y_0)^2 \leq R^2$, and $u_{xx} + u_{yy} = 0$ for $(x - x_0)^2 + (y - y_0)^2 < R^2$.
Show that, for $0\leq r < R$,
$$
u(x_0 + r\cos\theta, y_0 + r\sin\theta) = \sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}
$$
with
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)e^{-in\theta}d\theta.
$$
In particular,
$$
u(x_0,y_0) = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)d\theta.
$$Transform the problem by making the substitution $\rho = \frac{r}{R}$ for $0\leq r\leq R$.
The function $u(r,\theta)$ that was defined for $0\leq r\leq R$ then becomes a function $U(\rho,\theta)$ for $0\leq\rho\leq 1$.
 
Physics news on Phys.org
dwsmith said:
I don't see how this $\rho = \frac{r}{R}$ helps.Let $(x_0,y_0)$ be a point in the plane, and suppose $u(x,y)$ is continuous for $(x - x_0)^2 + (y - y_0)^2 \leq R^2$, and $u_{xx} + u_{yy} = 0$ for $(x - x_0)^2 + (y - y_0)^2 < R^2$.
Show that, for $0\leq r < R$,
$$
u(x_0 + r\cos\theta, y_0 + r\sin\theta) = \sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}
$$
with
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)e^{-in\theta}d\theta.
$$
In particular,
$$
u(x_0,y_0) = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)d\theta.
$$Transform the problem by making the substitution $\rho = \frac{r}{R}$ for $0\leq r\leq R$.
The function $u(r,\theta)$ that was defined for $0\leq r\leq R$ then becomes a function $U(\rho,\theta)$ for $0\leq\rho\leq 1$.

Hi dwsmith, :)

So you have,

\[u(x_0 + r\cos\theta, y_0 + r\sin\theta) = \sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}\]

where,

\[a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)e^{-in\theta}d\theta\]

I will take, \(u(r,\theta)=u(x_0 + r\cos\theta, y_0 + r\sin\theta)\) and \(f(\theta)=u(x_0 + R\cos\theta, y_0 + R\sin\theta)\).

Then we can write,

\begin{eqnarray}

u(r,\theta)&=&\sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}\\

&=&a_{0}+\sum_{n = 1}^{\infty}\left[a_{-n}\left(\frac{r}{R}\right)^{n}e^{-in\theta}+a_n\left(\frac{r}{R}\right)^{n}e^{in \theta}\right]\\

&=&a_{0}+\frac{1}{2\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\left[e^{-in\theta}\int_{-\pi}^{\pi}f(\theta)e^{in\theta}d\theta+e^{in\theta}\int_{-\pi}^{\pi}f(\theta)e^{-in\theta}d\theta\right]\\

\end{eqnarray}

Simplify this using the Euler's formula and you'll get,

\begin{eqnarray}

u(r,\theta)&=&a_{0}+\frac{1}{\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\left[\cos(n\theta)\int_{-\pi}^{\pi}f(\theta)\cos(n\theta)d\theta+\sin(n \theta)\int_{-\pi}^{\pi}f(\theta)\sin(n \theta)d\theta\right]\\

&=&a_{0}+\frac{1}{\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\left[\cos(n\theta)\int_{-\pi}^{\pi}f(\phi)\cos(n\phi)d\phi+\sin(n\theta) \int_{-\pi}^{\pi}f(\phi)\sin(n\phi)d\phi\right]\\

&=&a_{0}+\frac{1}{\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\int_{-\pi}^{\pi}f(\phi)\cos n(\theta-\phi)d\phi

\end{eqnarray}

Since \(\displaystyle a_{0}=\frac{1}{2\pi}\int_{\pi}^{\pi}f(\phi)d\phi\) we get,

\[u(r,\theta)=\frac{1}{2\pi}\int_{\pi}^{\pi}f(\phi)d\phi+\frac{1}{\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\int_{-\pi}^{\pi}f(\phi)\cos n(\theta-\phi)d\phi\]

Read pages 1 to 7 in >>this lecture note<< (Or you can refer Example 3 >>here<<). It describes how to obtain the solution of the Laplace's equation on a disk. As you can see the final result is exactly the one that we have obtained above. So what you are given to show is another form of the solution to the Laplace's equation on a disk.

Kind Regards,
Sudharaka.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.

Similar threads

Replies
7
Views
1K
Replies
33
Views
2K
Replies
16
Views
2K
Replies
2
Views
2K
Replies
11
Views
2K
Replies
4
Views
3K
Replies
4
Views
3K
Back
Top