MHB Laplace general soln (x-x_0)^2 + (y-y_0)^2\leq R^2

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    General Laplace
Dustinsfl
Messages
2,217
Reaction score
5
I don't see how this $\rho = \frac{r}{R}$ helps.Let $(x_0,y_0)$ be a point in the plane, and suppose $u(x,y)$ is continuous for $(x - x_0)^2 + (y - y_0)^2 \leq R^2$, and $u_{xx} + u_{yy} = 0$ for $(x - x_0)^2 + (y - y_0)^2 < R^2$.
Show that, for $0\leq r < R$,
$$
u(x_0 + r\cos\theta, y_0 + r\sin\theta) = \sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}
$$
with
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)e^{-in\theta}d\theta.
$$
In particular,
$$
u(x_0,y_0) = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)d\theta.
$$Transform the problem by making the substitution $\rho = \frac{r}{R}$ for $0\leq r\leq R$.
The function $u(r,\theta)$ that was defined for $0\leq r\leq R$ then becomes a function $U(\rho,\theta)$ for $0\leq\rho\leq 1$.
 
Physics news on Phys.org
dwsmith said:
I don't see how this $\rho = \frac{r}{R}$ helps.Let $(x_0,y_0)$ be a point in the plane, and suppose $u(x,y)$ is continuous for $(x - x_0)^2 + (y - y_0)^2 \leq R^2$, and $u_{xx} + u_{yy} = 0$ for $(x - x_0)^2 + (y - y_0)^2 < R^2$.
Show that, for $0\leq r < R$,
$$
u(x_0 + r\cos\theta, y_0 + r\sin\theta) = \sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}
$$
with
$$
a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)e^{-in\theta}d\theta.
$$
In particular,
$$
u(x_0,y_0) = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)d\theta.
$$Transform the problem by making the substitution $\rho = \frac{r}{R}$ for $0\leq r\leq R$.
The function $u(r,\theta)$ that was defined for $0\leq r\leq R$ then becomes a function $U(\rho,\theta)$ for $0\leq\rho\leq 1$.

Hi dwsmith, :)

So you have,

\[u(x_0 + r\cos\theta, y_0 + r\sin\theta) = \sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}\]

where,

\[a_n = \frac{1}{2\pi}\int_{-\pi}^{\pi}u(x_0 + R\cos\theta, y_0 + R\sin\theta)e^{-in\theta}d\theta\]

I will take, \(u(r,\theta)=u(x_0 + r\cos\theta, y_0 + r\sin\theta)\) and \(f(\theta)=u(x_0 + R\cos\theta, y_0 + R\sin\theta)\).

Then we can write,

\begin{eqnarray}

u(r,\theta)&=&\sum_{n = -\infty}^{\infty}a_n\left(\frac{r}{R}\right)^{|n|}e^{in\theta}\\

&=&a_{0}+\sum_{n = 1}^{\infty}\left[a_{-n}\left(\frac{r}{R}\right)^{n}e^{-in\theta}+a_n\left(\frac{r}{R}\right)^{n}e^{in \theta}\right]\\

&=&a_{0}+\frac{1}{2\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\left[e^{-in\theta}\int_{-\pi}^{\pi}f(\theta)e^{in\theta}d\theta+e^{in\theta}\int_{-\pi}^{\pi}f(\theta)e^{-in\theta}d\theta\right]\\

\end{eqnarray}

Simplify this using the Euler's formula and you'll get,

\begin{eqnarray}

u(r,\theta)&=&a_{0}+\frac{1}{\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\left[\cos(n\theta)\int_{-\pi}^{\pi}f(\theta)\cos(n\theta)d\theta+\sin(n \theta)\int_{-\pi}^{\pi}f(\theta)\sin(n \theta)d\theta\right]\\

&=&a_{0}+\frac{1}{\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\left[\cos(n\theta)\int_{-\pi}^{\pi}f(\phi)\cos(n\phi)d\phi+\sin(n\theta) \int_{-\pi}^{\pi}f(\phi)\sin(n\phi)d\phi\right]\\

&=&a_{0}+\frac{1}{\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\int_{-\pi}^{\pi}f(\phi)\cos n(\theta-\phi)d\phi

\end{eqnarray}

Since \(\displaystyle a_{0}=\frac{1}{2\pi}\int_{\pi}^{\pi}f(\phi)d\phi\) we get,

\[u(r,\theta)=\frac{1}{2\pi}\int_{\pi}^{\pi}f(\phi)d\phi+\frac{1}{\pi}\sum_{n = 1}^{\infty}\left(\frac{r}{R}\right)^{n}\int_{-\pi}^{\pi}f(\phi)\cos n(\theta-\phi)d\phi\]

Read pages 1 to 7 in >>this lecture note<< (Or you can refer Example 3 >>here<<). It describes how to obtain the solution of the Laplace's equation on a disk. As you can see the final result is exactly the one that we have obtained above. So what you are given to show is another form of the solution to the Laplace's equation on a disk.

Kind Regards,
Sudharaka.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
Replies
2
Views
5K
  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K