MHB Laplace transform of a series in time t

Click For Summary
Investigating the convergence of a series of functions using the Laplace transform is a standard approach. By analyzing the Laplace variable \( s \), one can establish conditions for the convergence of the series. These conditions can then be translated to the original variable \( t \). This method effectively links the behavior of the series in the time domain to its representation in the Laplace domain. Utilizing the Laplace transform for this purpose is both normal and beneficial in mathematical analysis.
sarrah1
Messages
55
Reaction score
0
Hi

I have a series

${f}_{1}$ , ${f}_{2}$, ... that are all a functions of a variable $t$

I am seeking a point-wise convergence. to investigate the convergence of the series I took Laplace transform. If I can find a condition on the Laplace variable $s$, can I find the condition of convergence of the series on $t$.

is it normal to investigate convergence of series via Laplace transform ?
thanks
 
Physics news on Phys.org
Yes, it is normal to investigate the convergence of a series via Laplace transform. The Laplace transform can be used to determine the conditions on the Laplace variable $s$ for which the series converges. This then allows us to determine the conditions on the original variable $t$ for which the series converges.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
7
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K