Laplacian of the value function

Click For Summary

Homework Help Overview

The discussion revolves around the Laplacian of the value function V(x,t), which is expressed in terms of a vector x, a matrix D, and other time-dependent vectors. Participants are examining the mathematical properties and implications of the function's formulation.

Discussion Character

  • Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Some participants question the original poster's reasoning regarding the Laplacian's result, noting the distinction between scalar and matrix forms. Others seek clarification on the definitions of the variables involved, particularly the nature of x and D.

Discussion Status

The discussion is currently exploring the implications of the matrix D and the vector x in the context of the Laplacian. There is an ongoing dialogue about the necessity of showing work and clarifying assumptions, indicating a productive examination of the problem.

Contextual Notes

Participants note that the original poster's formulation may lack clarity regarding the dimensions and types of the variables involved, which is crucial for correctly applying the Laplacian operator.

Jeffrey Eiyike
Messages
7
Reaction score
0

Homework Statement



Laplacian of the function V(x,t)=-1/2* x' D x + h' *x + D

Homework Equations

The Attempt at a Solution


is equals D.
 
Physics news on Phys.org
Your answer is wrong, please explain your reasoning. Note that D is a matrix and the Laplacian of a scalar function should be a scalar.

Edit: Note that I am assuming your x is a vector and x' its transpose. You really have not made this point clear in your post.
 
Laplacian of the function V(x,t)=-1/2* x' D x + h' *x - Z

x is a vector D is a matrix which depends on time h is a vector which depends on time Z is also a vector depends on time
 
D is a square matrix..
 
Jeffrey Eiyike said:

Homework Statement



Laplacian of the function V(x,t)=-1/2* x' D x + h' *x + D

Homework Equations

The Attempt at a Solution


is equals D.

PF rules require you to show your work. What is preventing you from just going ahead and actually computing the Laplacian?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K