Laser: CW-oscillation in a 3-level laser

  1. Hi

    At continuous-wave oscillation the gain is equal to the threshold gain, i.e. g = gthreshold. Now in my book, I have the following expression for the steady-state population-inversion for a three-level laser

    N2, steady state - N1, steady state = (P-Γ12)/(P+Γ12)NT

    where NT=N1, steady state+N2, steady state, P is the pump rate and Γ12 is the rate at which level 2 decays into level 1. Now my question is: If at CW-oscillation g=gt, then why is it that we can change N2, steady state - N1, steady state (and thereby the gain) in a three-level laser at steady-state? Isn't this a contradiction?
  2. jcsd
  3. Cthugha

    Cthugha 1,682
    Science Advisor

    What happens if you increase the pumping power further after laser oscillation sets in, is called gain clamping or upper population clamping. Any atoms you pump into the upper level will be almost immediately converted into laser light as fast as you pump them up (well - on statistical average, of course not necessarily the same atoms you just pumped up). Therefore the decay rate will also momentarily increase. If you do not increase the pump power constantly but just add short pulses of high pump power, you might also see the population numbers and the intracavity photon number undergo relaxation oscillations according to the fluctuation-dissipation theorem.
Know someone interested in this topic? Share a link to this question via email, Google+, Twitter, or Facebook

Have something to add?
Similar discussions for: Laser: CW-oscillation in a 3-level laser