When viewing the light coming from distant galaxies, it is my understanding that there are 2 redshifts occurring, the doppler effect from the galaxies' peculiar motions, and the cosmological redshift from space itself expanding.(adsbygoogle = window.adsbygoogle || []).push({});

For the cosmological redshift, I visualize a square of space, say 1 meter long, and a light wave sitting inside with a wavelength of 1 meter. When space stretches, lets say by a factor of 2, then the light wave sitting inside also gets stretched, and so now its wavelength is 2 meters long. I imagine space stretching and compressing due to gravitational waves is similar, and it is this stretching and compressing that will allow http://lisa.nasa.gov/" [Broken] to detect gravitational waves due to the changes in the wavelengths of the light waves hitting the LISA detectors, causing a change in the constructive/destructive interference.

But lets say we have a square of space the same length as the distance between 2 of the LISA detectors/transmitters. If they are setup so the laser light is in perfect constructive interference, and a gravitational wave passes by, wont they stay in perfect constructive interference? The space will get stretched and then compressed, depending on the direction of the wave as I understand it, but so will the light waves sitting inside the space by the same factor, so there wouldn't be a change in the interference. The way I see it the detectors get moved say 1 meter farther from each other, but at the same time the wavelength of light gets stretched by 1 meter (if the distance between the detectors were 1 wavelength). So I'm obviously missing something.

If I have 2 protons being held a certain distance apart so they are exerting a force of 1 newton on each other, and a gravitational wave passes through them in such a way that space compresses, do they move closer together, so I would then momentarily detect a force larger than 1 newton? Or do they somehow stay the same distance apart, even when the space between them is being compressed?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Laser interferometry and the search for gravitational waves

**Physics Forums | Science Articles, Homework Help, Discussion**