Laurent series, integral of a holomorphic function

Click For Summary
SUMMARY

The discussion focuses on proving the equality of the integral of a holomorphic function over an annular region and a series representation involving its coefficients. Specifically, it establishes that $$\frac{1}{\pi} \int _{ann (z_0, r, R)} |f(z)|^2 d \lambda(z) = \sum _{n \neq -1} \frac{R^{2n+2} - r^{2n+2}}{n+1}|a_n|^2 + 2 \log \frac{R}{r}|a_{-1}|^2$$ holds true under the conditions of convergence for the series. The discussion also clarifies the use of the complex measure $$d\lambda(z)$$ and the parametrization of the annular region using polar coordinates.

PREREQUISITES
  • Understanding of Laurent series and holomorphic functions.
  • Familiarity with complex measures and Lebesgue integration.
  • Knowledge of polar coordinates and their application in complex analysis.
  • Ability to manipulate series and integrals involving complex variables.
NEXT STEPS
  • Study the properties of Laurent series in complex analysis.
  • Learn about complex measures and their applications in integration.
  • Explore the use of polar coordinates in evaluating integrals over annular regions.
  • Investigate convergence criteria for series in complex analysis.
USEFUL FOR

Mathematicians, particularly those specializing in complex analysis, graduate students studying advanced calculus, and researchers working with holomorphic functions and their properties.

Samwise1
Messages
14
Reaction score
0
We are given $$f = \sum_{n= - \infty} ^{\infty} a_n (z-z_0)^n \in \mathcal{O} (ann (z_0, r, R)), \ \ 0<r<R< \infty $$.

Prove that $$\frac{1}{\pi} \int _{ann (z_0, r, R)} |f(z)|^2 d \lambda(z) = \sum _{n \neq -1} \frac{R^{2n+2} - r^{2n+2}}{n+1}|a_n|^2 + 2 \log \frac{R}{r}|a_{-1}|^2$$.

We know that the series above is convergent, so $$R = \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|}}$$ and $$r = \limsup_ {n \rightarrow \infty} \sqrt[n]{|a_{-n}|}$$.

In the series $$\sum _{n \neq -1} \frac{R^{2n+2}}{n+1}|a_n|^2, \ \ \sum _{n \neq -1} \frac{r^{2n+2}}{n+1}|a_n|^2$$ we have $$b_n = \frac{|a_n|^2}{n+1}$$ and radii of convergence are $R'=\frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{\frac{|a_n|^2}{n+1}}} \ge \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|^2}} \ge \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|}}^2 = R^2$, so $$R' \ge R^2$$.

Similarly, $$r' = \limsup_ {n \rightarrow \infty} \sqrt[n]{\frac{|a_{-n}|^2}{n+1}} \le \limsup_ {n \rightarrow \infty} \sqrt[n]{|a_{-n}|^2} \le r^2$$.

So the two series are convergent - they have the form $$\sum b_n (z-z_0)^n$$ with $z=R^2$ or $-r^2$.

Does that make sense? Could you tell me how to prove the equality of the integral and the series?
 
Physics news on Phys.org
Hello again Samwise,

Could you please explain the meaning $d\lambda(z)$? Then I can assist you further.
 
If I'm not mistaken, the measure $\lambda$ is a complex measure, viewed as a two-dimensional Lebesgue measure? If so, then by using polar representation you can parametrize the annular region $\text{ann}(z_0, r, R)$ by setting $z = z_0 + \rho e^{it}$, $r \le \rho \le R$ and $0 \le t \le 2\pi$. Then

$$ \frac{1}{\pi} \int_{\text{ann}(z_0, r, R)} |f(z)|^2\, d\lambda(z) = \frac{1}{\pi}\int_r^R \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \rho\, dt\, d\rho.$$

Now

$$|f(z)|^2 = f(z) \overline{f(z)} = \sum_{n,m\in \Bbb Z} a_n \overline{a}_m (z - z_0)^n\, \overline{(z - z_0)}^m,$$

which implies

$$|f(z_0 + \rho\, e^{it})|^2 = \sum_{n, m\in \Bbb Z} a_n \overline{a}_m\, \rho^n e^{int} \rho^m e^{-imt} = \sum_{n,m \in \Bbb Z} a_n \overline{a}_m \rho^{n+m} e^{i(n-m)t}.$$

Therefore

$$(*) \frac{1}{\pi} \int_r^R \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \rho\, dt\, d\rho = \frac{1}{\pi} \sum_{n,m\in \Bbb Z} a_n \overline{a}_m \int_r^R \rho^{n + m + 1}\, d\rho \int_0^{2\pi} e^{i(n-m)t}\, dt.$$

Since $\int_0^{2\pi} e^{i(n-m)t} dt$ is $2\pi$ when $n = m$ and $0$ when $n \neq m$, the expression on the right hand side of $(*)$ is

$$2\sum_{n\in \Bbb Z} |a_n|^2 \int_r^R \rho^{2n+1}\, d\rho = \sum_{n\neq -1} |a_n|^2 \int_r^R 2\rho^{2n+1}\, d\rho + 2|a_{-1}|^2 \int_r^R \rho^{-1}\, d\rho$$

$$ = \sum_{n \neq -1} |a_n|^2 \frac{R^{2n+2} - r^{2n+2}}{n+1} + 2|a_{-1}|^2 \log \frac{R}{r}.$$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
3
Views
2K