MHB Laurent series, integral of a holomorphic function

Samwise1
Messages
14
Reaction score
0
We are given $$f = \sum_{n= - \infty} ^{\infty} a_n (z-z_0)^n \in \mathcal{O} (ann (z_0, r, R)), \ \ 0<r<R< \infty $$.

Prove that $$\frac{1}{\pi} \int _{ann (z_0, r, R)} |f(z)|^2 d \lambda(z) = \sum _{n \neq -1} \frac{R^{2n+2} - r^{2n+2}}{n+1}|a_n|^2 + 2 \log \frac{R}{r}|a_{-1}|^2$$.

We know that the series above is convergent, so $$R = \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|}}$$ and $$r = \limsup_ {n \rightarrow \infty} \sqrt[n]{|a_{-n}|}$$.

In the series $$\sum _{n \neq -1} \frac{R^{2n+2}}{n+1}|a_n|^2, \ \ \sum _{n \neq -1} \frac{r^{2n+2}}{n+1}|a_n|^2$$ we have $$b_n = \frac{|a_n|^2}{n+1}$$ and radii of convergence are $R'=\frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{\frac{|a_n|^2}{n+1}}} \ge \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|^2}} \ge \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|}}^2 = R^2$, so $$R' \ge R^2$$.

Similarly, $$r' = \limsup_ {n \rightarrow \infty} \sqrt[n]{\frac{|a_{-n}|^2}{n+1}} \le \limsup_ {n \rightarrow \infty} \sqrt[n]{|a_{-n}|^2} \le r^2$$.

So the two series are convergent - they have the form $$\sum b_n (z-z_0)^n$$ with $z=R^2$ or $-r^2$.

Does that make sense? Could you tell me how to prove the equality of the integral and the series?
 
Physics news on Phys.org
Hello again Samwise,

Could you please explain the meaning $d\lambda(z)$? Then I can assist you further.
 
If I'm not mistaken, the measure $\lambda$ is a complex measure, viewed as a two-dimensional Lebesgue measure? If so, then by using polar representation you can parametrize the annular region $\text{ann}(z_0, r, R)$ by setting $z = z_0 + \rho e^{it}$, $r \le \rho \le R$ and $0 \le t \le 2\pi$. Then

$$ \frac{1}{\pi} \int_{\text{ann}(z_0, r, R)} |f(z)|^2\, d\lambda(z) = \frac{1}{\pi}\int_r^R \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \rho\, dt\, d\rho.$$

Now

$$|f(z)|^2 = f(z) \overline{f(z)} = \sum_{n,m\in \Bbb Z} a_n \overline{a}_m (z - z_0)^n\, \overline{(z - z_0)}^m,$$

which implies

$$|f(z_0 + \rho\, e^{it})|^2 = \sum_{n, m\in \Bbb Z} a_n \overline{a}_m\, \rho^n e^{int} \rho^m e^{-imt} = \sum_{n,m \in \Bbb Z} a_n \overline{a}_m \rho^{n+m} e^{i(n-m)t}.$$

Therefore

$$(*) \frac{1}{\pi} \int_r^R \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \rho\, dt\, d\rho = \frac{1}{\pi} \sum_{n,m\in \Bbb Z} a_n \overline{a}_m \int_r^R \rho^{n + m + 1}\, d\rho \int_0^{2\pi} e^{i(n-m)t}\, dt.$$

Since $\int_0^{2\pi} e^{i(n-m)t} dt$ is $2\pi$ when $n = m$ and $0$ when $n \neq m$, the expression on the right hand side of $(*)$ is

$$2\sum_{n\in \Bbb Z} |a_n|^2 \int_r^R \rho^{2n+1}\, d\rho = \sum_{n\neq -1} |a_n|^2 \int_r^R 2\rho^{2n+1}\, d\rho + 2|a_{-1}|^2 \int_r^R \rho^{-1}\, d\rho$$

$$ = \sum_{n \neq -1} |a_n|^2 \frac{R^{2n+2} - r^{2n+2}}{n+1} + 2|a_{-1}|^2 \log \frac{R}{r}.$$
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.

Similar threads

Back
Top