MHB Laurent series, integral of a holomorphic function

Samwise1
Messages
14
Reaction score
0
We are given $$f = \sum_{n= - \infty} ^{\infty} a_n (z-z_0)^n \in \mathcal{O} (ann (z_0, r, R)), \ \ 0<r<R< \infty $$.

Prove that $$\frac{1}{\pi} \int _{ann (z_0, r, R)} |f(z)|^2 d \lambda(z) = \sum _{n \neq -1} \frac{R^{2n+2} - r^{2n+2}}{n+1}|a_n|^2 + 2 \log \frac{R}{r}|a_{-1}|^2$$.

We know that the series above is convergent, so $$R = \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|}}$$ and $$r = \limsup_ {n \rightarrow \infty} \sqrt[n]{|a_{-n}|}$$.

In the series $$\sum _{n \neq -1} \frac{R^{2n+2}}{n+1}|a_n|^2, \ \ \sum _{n \neq -1} \frac{r^{2n+2}}{n+1}|a_n|^2$$ we have $$b_n = \frac{|a_n|^2}{n+1}$$ and radii of convergence are $R'=\frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{\frac{|a_n|^2}{n+1}}} \ge \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|^2}} \ge \frac{1}{\limsup_ {n \rightarrow \infty} \sqrt[n]{|a_n|}}^2 = R^2$, so $$R' \ge R^2$$.

Similarly, $$r' = \limsup_ {n \rightarrow \infty} \sqrt[n]{\frac{|a_{-n}|^2}{n+1}} \le \limsup_ {n \rightarrow \infty} \sqrt[n]{|a_{-n}|^2} \le r^2$$.

So the two series are convergent - they have the form $$\sum b_n (z-z_0)^n$$ with $z=R^2$ or $-r^2$.

Does that make sense? Could you tell me how to prove the equality of the integral and the series?
 
Physics news on Phys.org
Hello again Samwise,

Could you please explain the meaning $d\lambda(z)$? Then I can assist you further.
 
If I'm not mistaken, the measure $\lambda$ is a complex measure, viewed as a two-dimensional Lebesgue measure? If so, then by using polar representation you can parametrize the annular region $\text{ann}(z_0, r, R)$ by setting $z = z_0 + \rho e^{it}$, $r \le \rho \le R$ and $0 \le t \le 2\pi$. Then

$$ \frac{1}{\pi} \int_{\text{ann}(z_0, r, R)} |f(z)|^2\, d\lambda(z) = \frac{1}{\pi}\int_r^R \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \rho\, dt\, d\rho.$$

Now

$$|f(z)|^2 = f(z) \overline{f(z)} = \sum_{n,m\in \Bbb Z} a_n \overline{a}_m (z - z_0)^n\, \overline{(z - z_0)}^m,$$

which implies

$$|f(z_0 + \rho\, e^{it})|^2 = \sum_{n, m\in \Bbb Z} a_n \overline{a}_m\, \rho^n e^{int} \rho^m e^{-imt} = \sum_{n,m \in \Bbb Z} a_n \overline{a}_m \rho^{n+m} e^{i(n-m)t}.$$

Therefore

$$(*) \frac{1}{\pi} \int_r^R \int_0^{2\pi} |f(z_0 + \rho e^{it})|^2 \rho\, dt\, d\rho = \frac{1}{\pi} \sum_{n,m\in \Bbb Z} a_n \overline{a}_m \int_r^R \rho^{n + m + 1}\, d\rho \int_0^{2\pi} e^{i(n-m)t}\, dt.$$

Since $\int_0^{2\pi} e^{i(n-m)t} dt$ is $2\pi$ when $n = m$ and $0$ when $n \neq m$, the expression on the right hand side of $(*)$ is

$$2\sum_{n\in \Bbb Z} |a_n|^2 \int_r^R \rho^{2n+1}\, d\rho = \sum_{n\neq -1} |a_n|^2 \int_r^R 2\rho^{2n+1}\, d\rho + 2|a_{-1}|^2 \int_r^R \rho^{-1}\, d\rho$$

$$ = \sum_{n \neq -1} |a_n|^2 \frac{R^{2n+2} - r^{2n+2}}{n+1} + 2|a_{-1}|^2 \log \frac{R}{r}.$$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
22
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
3
Views
2K