Hi, everyone:(adsbygoogle = window.adsbygoogle || []).push({});

I was reviewing some intro material, and I ended up confused with the issue of

independence with the following problem:

We are given two teams, A,B, playing against each other. A wins with probability

P(A)=0.6 , B wins with P(B)=0.4 (games are played until someone wins.). We also

assume that the outcome of any game is independent from that of any other

game.

**Now** . Here is where I am confused:

Let a string with A in i-th place and B in j-th place denote that A won the i-th

game and B won the j-th game.

I am trying to show that the probability of team A winning two consecutive games

is (0.6)^2 , arguing that the outcome : AA has probability (0.6)(0.6) , since the

outcome of game 2 is (assumed) independent from that of game 1.

**BUT** I am having trouble expressing the event 'AA' as an intersection of two

events E,E' , which I need to do in order to use the rule: P(E/\E')=P(E)*P(E') , (with

/\:= intersection , and * is product)

My sample space is :

{ A,B , AA, AB, BA, BB, AAA, ....}

And I don't see how to express 'AA' as an intersection of events in order to justify

saying that the probability of 'AA' is (0.6)(0.6) . Any Ideas.?.

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Layout for defining prob. for Independent Events.

**Physics Forums | Science Articles, Homework Help, Discussion**