- #1
PFuser1232
- 479
- 20
I want to make sure I understand the conditions required for L'Hospital's Rule to work.
$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$$
If ##\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}## exists.
Should ##f## and ##g## be differentiable at ##a##? Or just around ##a##?
Also, would it work if ##g'(a) = 0##?
$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}$$
If ##\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}## exists.
Should ##f## and ##g## be differentiable at ##a##? Or just around ##a##?
Also, would it work if ##g'(a) = 0##?