Lie-algebra representation powers - plethysms

  • Thread starter lpetrich
  • Start date
  • #1
I've done some more work on my [Broken] package, adding decompositions of representation powers. It was only recently that I discovered that they are called "plethysms".

Rep powers can be decomposed by symmetry types, a feature that can be important in their applications. For power p, the types are symmetric (p >=1), antisymmetric (p >= 2), and mixed (p >= 3), with more than one mixed type for p >= 4.

These are related to the irreps in (SU(n) fundamental rep)p, and they share multiplicities. The symmetry types and irreps can be denoted with Young diagrams having p boxes.

With a lot of experimentation and trial and error, I have worked out how to do rep-power decompositions, but the algorithm is hideously complicated, Though I've successfully tested it for low powers, I don't have a rigorous proof for it, and I've been unsuccessful in finding an algorithm in the professional literature. I've also had to create versions for reducible reps and algebra-product reps, because rep-power decompositions do not have any simple decompositions of those in terms of the rpd's of the component irreps of the component algebras.


As an example, consider flavor and spin symmetries of the three light quarks: SU(3) and SU(2) respectively. They can be combined into SU(6), and one can undo this combination into SU(3)*SU(2) again with

Mathematica: SubalgMultSU[ldqksp,{3,2}]; res = DoBranching[ldqksp,{1,0,0,0,0}]
Python: ldqksp = SubalgMultSU((3,2)); res = ldqksp.DoBranching((1,0,0,0,0))

Breakdown of cube of fundamental rep of SU(6):

Mathematica: MakeLieAlgebra[laqksp,{1,5}]; res = DecomposeRepPower[laqksp,{1,0,0,0,0},3]
Python: res = DecomposeRepPower((1,5), (1,0,0,0,0), 3)

Count, Irrep:
S: (1, (3, 0, 0, 0, 0))
M: (1, (1, 1, 0, 0, 0))
A: (1, (0, 0, 1, 0, 0))

Breakdown of cube of corresponding rep of SU(3)*SU(2):

Mathematica: MakeLieAlgebra[laqk, {1, 2}]; MakeLieAlgebra[lasp, {1, 1}]; res = DecomposeAlgProdRepPower[{laqk, lasp}, {{1, 0}, {1}}, 3]
Python: res = DecomposeAlgProdRepPower(((1,2),(1,1)), ((1,0),(1,)), 3)

Count, SU(3) Irrep, SU(2) Irrep
S: (1, ((3, 0), (3,))) . (1, ((1, 1), (1,)))
M: (1, ((1, 1), (3,))) . (1, ((3, 0), (1,))) . (1, ((1, 1), (1,))) . (1, ((0, 0), (1,)))
A: (1, ((1, 1), (1,))) . (1, ((0, 0), (3,)))


I'll now translate these results into typical physicist language, using rep multiplicities and spins:

Each quark: (3,1/2)
S: (10,3/2) + (8,1/2)
M: (8,3/2) + (10,1/2) + (8,1/2) + (1,1/2)
A: (8,1/2) + (1,3/2)

The symmetric one is the one that matches the light-baryon spectrum, and not the mixed or the antisymmetric ones. This is contrary to Fermi-Dirac statistics, and it took QCD to resolve that discrepancy. The quarks are antisymmetric in color, which gives them overall antisymmetry, thus preserving FD statistics.
Last edited by a moderator:

Answers and Replies

  • #2
Hi Ipetrich,

Glad to see you're still working on this - it's looking good (although it's getting beyond the stuff that I've played with). I like how you're maintaining the Mathematica and python code and always giving examples from QFT.

Branching rules from plethysms are implemented in sage.
It's described here (with references):
and the code can be found here: [Broken]

This should provide some good comparisons/test cases for your code.
Last edited by a moderator:
  • #3
Thanx. I checked on that, and it does not seem to list plethysm decompositions by symmetry type.

That was part of the algorithms for branching rules, and I'd implemented all of them:
  • Levi -- root demotion. Sage's code does not seem to calculate the resulting U(1) factors, however.
  • Dynkin-diagram extension splitting.
  • Division of orthogonal and symplectic groups: SO(m+n)->SO(m)*SO(n), Sp(2(m+n)) -> Sp(2m)*Sp(2n). All but SO(even) -> SO(odd)*SO(odd) can be derived from root demotion and extension splitting, however, using SO(2) ~ U(1).
  • Symmetric subgroups: SU(n) -> SO(n), SU(2n) -> Sp(2n), SO(2n) -> SO(2n-1), E(6) -> F(4)
  • Tensor products: SU(m*n) -> SU(m)*SU(n), SO/Sp(m*n) -> SO/Sp(m)*SO/Sp(n) (SO -> SO*SO or Sp*Sp, Sp -> SO*Sp or Sp*SO)
  • Symmetric powers: I implement what seems like a superset of their special case: anything -> SU(2). Root height -> SU(2) root value.
The plethysm rule seemed like a subcase of one of Dynkin's theorems. I dug up a translation of a collection of his papers, and I found various useful theorems.

I've also implemented all the maximal subalgebras for the exceptional ones; Slansky lists all the maximal subalgebras for algebras with rank <= 8.

These special cases do not encompass all the subalgebras of classical algebras, but Dynkin has some theorems that supply constraints on the remaining ones:

* At least one "simple" irrep must map onto a single term in the subalgebra, but that term need not have a "simple" irrep. Here are the "simple" ones:

A(n) / SU(n-1): vector and conjugate vector (dim 2n+1)
B(n) / SO(2n+1): vector (dim 2n+1) and spinor (dim 2^n)
C(n) / Sp(2n): vector (dim 2n)
D(n) / SO(2n): vector (dim 2n) and the two spinors (dim 2^(n-1))

* The algebra's adjoint rep must map onto subalgebra's adjoint rep, though usually with extra irreps. The adjoint can be constructed with the help of powers and symmetry types (plethysms) of the defining irreps for the original and the subalgebra.

* The original algebra's irrep and the subalgebra's one must have the same "reality":
  • Real -- self-conjugate with even height -- adjoint in antisymmetric part of square
  • Pseudoreal or quaternionic -- self-conjugate with odd height -- adjoint in symmetric part of square
  • Complex -- not self-conjugate -- adjoint in higher power
In general, (irrep)*(its conjugate) always contains the adjoint rep.

I could not find any general algorithm for calculating projection matrices in this case, or any subcases, so I left unimplemented most of these ones that Slansky had listed. Some examples of this case:

SU(6) -> SU(3): (1,0,0,0,0) 6 -> (2,0) 6
SO(7) -> G(2): (1,0,0) 7 -> (0,1) 7
  • #4
I'd found branching-rule projection matrices in ad hoc fashion; part of the problem is finding which subalgebra rep root an original-algebra rep root maps onto.

Turning to Sage's D7 -> G2 plethysm example, I note that D7's vector rep (1,0,0,0,0,0,0) maps onto G2's adjoint rep (1,0), both with dimension 14. For G2, Sage uses reverse order from my code.

In the example's final output, the first five entries were all antisymmetric products, and they agree with what my code produces. I tried my code on D7 also, and the antisymmetric products were all single irreps with one weight value 1 and the others zero. Going to the 6th power yielded (0,0,0,0,0,1,1) -- the product of the two spinors. So mapping an individual spinor onto G2 will be tricky.

In my code, I identify the symmetry types with Young diagrams, and these map directly onto the irreps in powers of the fundamental rep of SU(n) / A(n+1).
Power p symmetric: (p)
Power p antisymmetric: (p 1's)
Power p mixed: (other values that add up to p)

Symmetric: all index permutations equally weighted
Antisymmetric: like symmetric, but all odd permutations have reverse sign
Mixed: hard to find any simple formulas

Getting back to Young diagrams, one can easily find SU(n) rep dimensions with them, and there's a moderately complicated algorithm called the Littlewood-Richardson rule for rep products. Are there similar techniques for SO(n) and Sp(2n)? For SO(n), product irreps of the vector rep have to be traceless, and one has to take that into account. Like:

SU(n) -- vector * vector = (symmetric tensor) + (antisymmetric tensor)
SO(n) -- the symmetric tensor becomes (symmetric traceless tensor) + (scalar)
Sp(2n) -- the antisymmetric tensor becomes (antisymmetric sort-of-traceless tensor) + (scalar)

I say sort-of-traceless, because it's an operation that involves subtracting out the symplectic form for the algebra:
J = {{0, I}, {-I, 0}}
in the fashion of tracelessness, subtracting out the identity matrix.
  • #5
I have updated my Lie-algebra code yet again, this time to support U(1) factors in the algebra-list versions of my rep powers. U(1) factors can be any integers or rational numbers; they follow the max-weight vectors. It's possible to have only U(1) factors if one so desires. Here, I'll give some results in Python form - it should be easy to translate ino Mma form.

DecomposeAlgProdRepPower( ((1,1),), ((1,),42), 2)
((1, ((2,), 84)),)
((1, ((0,), 84)),)
(adding two spin-1/2's to make a spin 1 (symmetric) and a spin 0 (antisymmetric))

Now to raise vectors in various dimensions in various powers. The outputs are the symmetry-type decomposition lists, whose members have format (count, rep).

2D vector: SO(2) = U(1) -- helicity. Demo of using no semisimple algebras, just U(1)'s
DecomposeAlgProdRepListPower,( (), ((1,),(-1,)), p)
p = 1
((1, (1,)), (1, (-1,)))
p = 2
((1, (2,)), (1, (0,)), (1, (-2,)))
((1, (0,)),)
p = 3
((1, (3,)), (1, (1,)), (1, (-1,)), (1, (-3,)))
((1, (1,)), (1, (-1,)))
p = 4
((1, (4,)), (1, (2,)), (1, (0,)), (1, (-2,)), (1, (-4,)))
((1, (2,)), (1, (0,)), (1, (-2,)))
((1, (0,)),)

3D vector: SO(3) = B(1)
DecomposeRepPower( (2,1), (2,), p)
p = 1
((1, (2,)),)
p = 2
((1, (4,)), (1, (0,)))
((1, (2,)),)
p = 3
((1, (6,)), (1, (2,)))
((1, (4,)), (1, (2,)))
((1, (0,)),)
p = 4
((1, (8,)), (1, (4,)), (1, (0,)))
((1, (6,)), (1, (4,)), (1, (2,)))
((1, (4,)), (1, (0,)))
((1, (2,)),)

4D vector: SO(4) = D(2)
DecomposeRepPower( (4,2), (1,1), p)
p = 1
((1, (1, 1)),)
p = 2
((1, (2, 2)), (1, (0, 0)))
((1, (0, 2)), (1, (2, 0)))
p = 3
((1, (3, 3)), (1, (1, 1)))
((1, (1, 3)), (1, (3, 1)), (1, (1, 1)))
((1, (1, 1)),)
p = 4
((1, (4, 4)), (1, (2, 2)), (1, (0, 0)))
((1, (2, 4)), (1, (4, 2)), (1, (2, 2)), (1, (2, 0)), (1, (0, 2)))
((1, (2, 2)), (1, (4, 0)), (1, (0, 4)), (1, (0, 0)))
((1, (2, 2)), (1, (2, 0)), (1, (0, 2)))
((1, (0, 0)),)

The second one for p = 2 is the antisymmetric 2-tensor.
For 2D; scalar: 0
For 3D: vector: (2,)
For 4D: self-dual and anti-self-dual parts: (0, 2) and (2, 0)
Duality: (1/2)*e.A = +/- A

For the Faraday tensor, the self-dual and anti-self-dual parts are, in 3+1 notation, E+i*B and E-i*B

The third one for p = 4 has the symmetries of the Riemann tensor. Its Young diagram is (2,2)
For 2D, it's given by the Ricci scalar: 0
For 3D, it's given by the Ricci tensor (symmetric 2-tensor): (4,) and (0,)
For 4D it's given by the Ricci tensor + the Weyl tensor:
(2, 2) and (0, 0)
(4, 0) and (0, 4)
The latter has self-dual and anti-self-dual parts.
  • #6
I've fixed a bug in the Python version, -- DecomposeRepProduct had been returning empty products, but it's now returning correct ones. I've also added counted-list inputs to rep powers, those being lists of (count,maxwts) instead of just maxwts.

I also have some more conjectures in addition to my conjectured rep-power-decomposition (plethysm) formula. I've looked in the literature, but I can't find whether they've been anticipated.

A rep-product one:

Take representation R and some power, and take the part with the symmetry type denoted by Young diagram Y. I will call this part RY (R to power Y).

The rep product RY1 * RY2 = sumY cY1,Y2,Y RY

where cY1,Y2,Y are the Littlewood-Richardson coefficients for how many copies of Y are in the product of Y1 and Y2.

This is correct if R is the fundamental representation of SU(n), and I've verified it in some other cases. I've looked in the literature for a general proof, without success.

A rep-sum one:

For representations R1 and R2 of a Lie algebra, the sum rep R1 + R2 satisfies
(R1 + R2)Y = sumY1,Y2 cY1,Y2,Y R1Y1 * R2Y2

I've verified that one also in some cases. I'm in the design phase of implementing it more generally, and I should be able to implement it before long.

Testing cannot be complete, of course, but it should be feasible for the lower-rank algebras and lower-multiplicity reps.


I've found counterexamples to (RY1)Y2 = (RY2)Y1, and I've been unable to guess what cx is in

(R1,R2)Y = sumY1,Y2 cxY1,Y2,Y (R1Y1,R2Y2)

other than Y1 and Y2 having the same order as Y for cx to be nonzero.
  • #7
I've updated [Broken] to include code for testing my previous post's conjectures in the Mathematica version. I've run it on several examples, and it has been successful so far. I still haven't found proofs, however.

But both Mathematica and Python versions now have code for doing purely-symmetric or purely-antisymmetric representation-power decompositions (plethysms).

Example in Python:
# Lie algebras for color, 3-quark flavor, and spin
# Outer product because a quark has all 3 degrees of freedom
lax = ((1,2), (1,2), (1,1))

# Quark rep: color 3 * flavor 3 * spin mult. 2 (spin 1/2)
qkwt = ((1,0), (1,0), (1,))

# The 3 is for there being 3 quarks in a baryon
# The -1 is for being completely antisymmetric (Fermi-Dirac statistics)
baryonall = DecomposeAlgProdRepPwrSym(lax,qkwt,3,-1)

# Extract the color singlets
baryon = [b for b in baryonall if b[1][0] == (0,0)]

# Display the baryon reps
for b in baryon: print b

# Multiplicity, (color rep, flavor rep, spin rep)
(1, ((0, 0), (3, 0), (3,)))
(1, ((0, 0), (1, 1), (1,)))

# Equivalent to flavor 10 (triangle), spin 3/2 and flavor 8 (hexagon), spin 1/2

The Sage results that Simon_Tyler had linked to I could duplicate with (Mma)

MakeLieAlgebra[lag2, {7,2}]
DecomposeRepPwrSym[lag2, {1,0}, pwr, -1]

with pwr = 1,2,3,4,5
Sage's code uses the reverse order of roots/weights from mine, which is Robert Cahn's order.
Last edited by a moderator:
  • #8
I've added some stuff on Schur functions and related ones to my Young-diagram Mma notebook in that archive. I've done so because Schur functions are related to the irreps of SU(n) / A(n-1) / SL(n,R). They are even specified in the same way, with partitions / Young diagrams. In general:

Schur function: S(part / YD, vector)

The smallest ones:
S({},{x1,x2,x3}) = 1
S({1},{x1,x2,x3}) = x1+x2+x3
S({2},{x1,x2,x3}) = x1^2+x1*x2+x2^2+x1*x3+x2*x3+x3^2
S({1,1},{x1,x2,x3}) = x1*x2+x1*x3+x2*x3

They form a basis for the symmetric polynomials in their vector arg.

Products of them give linear combinations of them specified with the Littlewood-Richardson rule, familiar from products of SU(n) irreps.

Plethysms on Schur functions are defined with this algorithm:

To calculate S(a)[S(b)] the plethysm of S(a) over S(b), do
For a vector x, decompose S(b,x) as a sum of monic monomials in products and powers of the x components: x(1)^2*x(2), etc.
Make them into a vector, and evaluate S(a,(this monic-monomial vector))

You can now decompose this value into a sum of S(c,x) values. In short,
S(a)[S(b)] = sum over c of pl(a,b,c) S(c)

One can replace S(a) with some other sort of symmetric function on a vector, and still get (Schur function) -> (combination of Schur functions).

However, it's been difficult for me to find an algorithm for calculating pl(a,b,c) comparable to the Littlewood-Richardson rule. One can do it with the algorithm here, or with A(n) Lie-algebra irreps, but I wish to avoid these algorithms, because they can require a very large amount of calculation.
  • #9
I've succeeded in finding an algorithm for pl(a,b,c) when a and b are partitions / Young diagrams for symmetric or antisymmetric SU(n) reps. That is, {n} or {n 1's} / {1^n}

This algorithm sidesteps calculating reps or working with Schur-function vector args, thus making it much faster. It's essentially the algorithm in EUROCAL '85. European Conference on ... - Bob F. Caviness - Google Books

Some special cases of Schur functions:
S({n},x) = homogeneous symmetric polynomial in x of order n
Terms have the form (x1^p1)*(x2^p2)*... powers summing to n
S({1^n},x) = elementary symmetric polynomial in x of order n
Terms have the form x1*x2*... powers no greater than 1 and summing to n
All coefficients are 1

Calculate S({n},x^m) and S({1^n},x^m} from power sums of x using (power-sum to homogeneous) and (power-sum to elementary) formulas.

Calculate the plethysm by treating the above S's as power sums in the (power-sum to homogeneous) and (power-sum to elementary) formulas.

Along the way, I found a formula for power sums in terms of Schur functions:
sum(x^n) = sum over k: 0 to n-1 of (-1)^k * S({n-k, k 1's},x)

I was unable to prove it, though I was able to verify it for small n's.
  • #10
Various identities involving plethysms: rep-power decompositions.
The Plethysm Technique Applied to the Classification of Nuclear States, by Alcaras, Tambergs, Krasta, Ruza, Katkevicius

plt(a,x) is the plethysm of a on x, with a the plethysmer and x the plethysmed one, an irrep. a is a partition / Young diagram. A power p decomposes into diagrams a with length p.

Inner product: a.b = sum of ipc(a,b,c) * c

ipc(a,b,c) = 1/N sum over diagrams r of N(r)*X(a,r)*X(b,r)*X(c,r)
X(a,r) = characters of symmetric group for irrep a and class b (always integer), N(r) is order of class with part/diag r, N is total order.

Outer product: a*b = sum of opc(a,b,c) * c

opc(a,b,c) one calculates uses the Littlewood-Richardson rule.

Reps x,y have sum (sum of coefficients of irreps in it), difference (likewise with differences), product (rep product)

The identities:

plt(a +- b, x) = plt(a,x) +- plt(b,x)
plt(a, x + y) = sum over b,c of opc(b,c,a) * plt(b,x)*plt(c,y)
plt(a, x - y) = sum over b,c of opc(b,c,a) * (-1)^length(c) * plt(b,x)*plt(c,y)
plt(a*b,x) = plt(a,x)*plt(b,x)
plt(a,x*y) = sum over b,c of ipc(b,c,a) * plt(b,x)*plt(c,y)
conjg(plt(a,x)) = plt(a,conjg(x))

I earlier went through a lot of trouble to find formulas for plt(a,x+y) and plt(a,x*y), and while I successfully guessed the former one by extrapolating from small examples, I had much more difficulty with the latter one.
Last edited:
  • #11
I now have plethysms / rep-power decompositions working on Young diagrams, without calculating Lie-algebra reps or Schur functions of vectors.

SelYDPlethysm with args plethysmer selector, order, plethysmed one selector, order
sym = {order}, sym all = {p} up to {order}
ats = {1^order}, ats all = {1^p} up to {1^order}
gen = (all YD's with size = order), gen all = (all YD's with size <= order)

As far as I can tell, it works.
  • #12
conjg(plt(a,x)) = plt(a,conjg(x)) is correct for conjugate representations, but for conjugate Schur functions / Young diagrams, one finds this:

conjg(plt(a,x)) =
plt(a,conjg(x)) if len(x) is even
plt(conjg(a),conjg(x)) if len(x) is odd

len(x) is the length or order or total power of x.

Another identity: plt(a,plt(b,x)) = plt(plt(a,b),x)

Some special cases: symmetric and antisymmetric, {n} and {1^n}. I call them that because of the corresponding SU(N) / SL(N) irreps and how they are composed from the fundamental one: the symmetrized or the antisymmetrized product.

plt({n},x+y) = sum over k of plt({n-k},x)*plt({k},y)
plt({1^n},x+y) = sum over k of plt({1^(n-k)},x)*plt({1^k},y)

plt({n},x*y) = sum over a of plt(a,x)*plt(a,y) where len(a) = n
plt({1^n},x*y) = sum over a of plt(a,x)*plt(conjg(a),y) where len(a) = n
  • #13
I think that I ought to give the algorithm that I conjecture for plethysms of Lie-algebra representations. I start with a rep given by a list of sets (n,v) where n is the multiplicity/degeneracy and v is a root vector. The root vectors are all distinct in the list.

For power p, the results are lists of multiplicity-vector sets (N(ni,1,ni,2,,p), vi,1 + vi,2 + ... + vi,p)
I then find irreps from it in standard fashion, by repeatedly looking for the highest weight and subtracting out the irrep with that highest weight.

The problem is, of course, finding the N functions. For the pure symmetric and antisymmetric cases, it is easy. First, find the multiplicities m of each n value, a list of

and then one finds
N = product over the (m,n)'s of n*(n+s)*(n+2*s)...(n+(m-1)*s)/m!
where s = 1 for symmetric and -1 for antisymmetric. It's rather easy to find this result from symmetry.

But the mixed-symmetry cases are much more difficult. They are plethysms of Young diagrams y on the rep, and I calculate them for all the y's that add up to the power. The y's correspond to irreps of SU(n) that one finds from powers of SU(n)'s fundamental rep, and a plethysm of y on the fundamental rep yields the rep with Young-diagram y.

That's rather easy to show from the correspondence between Schur functions and the characters of SU(n) Lie algebras. In general, a Lie-algebra character for a rep is the sum of n*exp(c.v) for vector c and rep pairs (n,v).

So I calculate all the N(y,{n}) for Young diagrams y and vectors of n: {n}.


I first calculate NW(yw,{n}) the number for the SU(n) Weyl orbit with max weight yw, then find
N(y,{n}) = sum over yw of Kostka(y,yw)*NW(yw,{n})


(SU(n) irrep for y) = sum over yw of Kostka(y,yw) * (SU(n) Weyl orbit for yw)

or in Schur functions,

S(y,x) = sum over yw of Kostka(y,yw) * SW(yw,x)

where SW(yw,x) is a Schur-Weyl function, the sum over all terms xi1r1*xi2r2*...*xi(n)r(n) for yw = {r1,r2,...,r(n)} and selections xi's from the vector x.

The Kostka matrix I find using the algorithm in "Determinantal Expression and Recursion for Jack Polynomials", by L. Lapointe, A. Lascoux, J. Morse. Are there any recursive algorithms for this matrix? Algorithms that calculate each power's Kostka matrix from the previous ones.


NW(yw,{n}) turns out to be relatively simple. From {n}, find {(m,n)}, and sort the list to place the m's in non-increasing order. The m's form the Young diagram ym.

Find all nestings of yw in ym. Row lengths: yw = {rw}, ym = {rm}. These are all possibilities of
rm(i) = sum over k of rw(j(i,k))
where each rw value appears once and only once in the sums and nestings with different arrangements of repeated values are counted as a single nesting.

For each nesting, find the product over the rm(i)'s in ym of:
using power = count of rw(j(i,k))'s
using repeat counts = counts of repeats of rw(j(i,k)) values.
power!/(product of count! for count in repeat counts) * n(i)*(n(i)-1)*...*(n(i)-power+1)/power!

Add up over all nestings. No nestings possible yields zero. That gives NW(yw,{n}). Find for all yw's. Multiply by the Kostka matrix for the overall power to get the N(y,{n})'s.

This algorithm essentially calculates the plethysm of SU(n) Weyl orbits on the rep character, then uses the appropriate Kostka matrix to find the plethysm of SU(n) irreps on the rep character.

This suggests a proof: turn the rep character into a sum of monomials exp(c.v(i)) where each such term is repeated n(i) times. Then make it a vector of exp(c.v(i)) values and use it as the vector arg in the Schur or Schur-Weyl function. I'd have to work out a lot of combinatorics, but it seems like it could be done in the Schur-Weyl case.
  • #14
Hey lpetrich,

I don't have much to say about your recent posts and work, since it's out of my range of experience and I don't have time to study it at the moment.
So I'll just say that it sounds good and keep going!
  • #15

I worked out the combinatorics for the Schur-Weyl case. Let's consider the case where x1, x2, ..., x(n) have the same root value v, the same value of exp(c.v). Let's also consider them divided among the Schur-Weyl row lengths r1, r2, ..., r(p): x1r1*x2r2*...*x(p)r(p) and all permutations. There are thus n*(n-1)*...*(n-p+1) such terms. However, sets of equal r's have the permutations of x's in them counted only once, which means dividing the number of terms by the product (number of r equal to some value)! for all values that the r's equal.

If the full set of terms contains something like x1*x2*x3 + x1*x3*x2 + x2*x1*x3 + x2*x3*x1 + x3*x1*x2 + x3*x2*x1, one must divide by (# of x's here)! = 3! to count only x1*x2*x3.

Which is the final step of the proof.

I note as an aside the Weyl character formula for SU(2) irreps. Using quantum-mechanical notation with angular momentum j, the highest weight becomes {2j}, and the character

X(j,c) = exp((-j/2)*c) + exp((-j/2+1)*c) + ... + exp((j/2)*c)
= sinh((j+1)*c/2)/sinh(c/2)
  • #16
Not surprisingly, large reps take a long time to process. I tried the square plethysm of the fundamental irrep of E8, the "248", and I found about 3 minutes for Mathematica and 1 minute for Python on my 2-GHz Intel Core 2 Duo iMac

(0, 0, 0, 0, 0, 0, 1, 0): 248
symmetric part of square
1 of (0, 0, 0, 0, 0, 0, 2, 0): 27000
1 of (1, 0, 0, 0, 0, 0, 0, 0): 3875
1 of (0, 0, 0, 0, 0, 0, 0, 0): 1
antisymmetric part of square
1 of (0, 0, 0, 0, 0, 1, 0, 0): 30380
1 of (0, 0, 0, 0, 0, 0, 1, 0): 248
Using Robert Cahn's root-numbering convention

I've been considering alternatives to both Mma and Python in the hope of getting a speedup. They have varying advantages and disadvantages.

Here are some benchmarking sites: [Broken], the most useful that I've found
The winners are Fortran, C, C++, Ada, ATS, and Java.

Neither Ada nor ATS is very well-known, so I'll ignore them. The next question is whether the languages have convenience features for some of the more common tasks. Associative arrays are good for finding whether a vector is already in a list of vectors, a very common task in my code, and operator overloading is good for implementing fractions and abstract-algebra entities.

Programming Language Comparison has a section on operator overloading, and of the fast languages, only C++ has it. Looking in Wikipedia, I find that of those languages, only C++ and Java have them.

So I choose C++. With its templates and operator overloading, one can implement fractions, and with its Standard Template Library template "map", one can implement associative arrays.
Last edited by a moderator:
  • #17
Have you tried just using compilation to C in both Mathematica and Python?
The generated C code can sometimes be almost as fast or faster than a hand coded C/C++ <-- this blog is worth reading [Broken]
It also makes parallelization easier:

The advantage of using these is that you only need to compile the key steps in your code and only need to make minimal modifications to your existing code.

The Mathematica Compile[..., CompilationTarget->"C"] function will fall back to normal virtual machine compilation if no C compiler exists.
And for Cython, you can use python decorators to achieve a similar thing
This is even easier if you're using sage

The other thing to try is to use (integer) packed arrays and make sure that you don't accidentally unpack them.
For Mathematica, see
For pure Python see
but maybe it would be easier and faster to use Numpy

Of course, if you do completely rewrite your code in C or C++ then you can create interfaces for Mathematica and Python (and most other languages). However, your code will also become less accessible to most people.

Anyway, sorry for another link dump. Hopefully you find something useful in it!
Last edited by a moderator:
  • #18
Thanx for those tips. I had no idea that the Mma Append / AppendTo / Prepend / PrependTo functions would get computationally expensive for long lists -- those functions make a new copy of the list.

[noparse]So I've replaced them with indexing functions. Instead of PosRoots[[ix]], I do PosRoots[ix], and maintain a total count. I don't really need to do so, since I can get all the definitions with DownValues[PosRoots].[/noparse]

Python: 71 s
Mathematica: 74 s
About 2.5 times faster than before, and neck-and-neck with Python.

I've updated my archive with the new version. Also, for Notable Physics Results, I've added a couple results to the the SU(3) results in the Flavor and Gauge Symmetry section. A summary:
(* Create SU(2) and SU(3) Lie algebras: spin, flavor, color *)
MakeLieAlgebra[spnsu2, {1, 1}]
MakeLieAlgebra[gfssu3, {1, 2}]

(* Spin and flavor together -- all symmetry types *)
DecomposeAlgProdRepPower[{spnsu2, gfssu3}, {{1}, {1, 0}}, 3]

(* Spin, flavor, and color together -- antisymmetry for Fermi-Dirac statistics *)
DecomposeAlgProdRepPwrSym[{spnsu2, gfssu3, gfssu3}, {{1}, {1, 0}, {1, 0}}, 3, -1]
  • #19
Yeah, Leonid's performance tuning tips are good (like all of his answers - and his book!).

I've sent you an invite for the new Mathematica.StackExchange site, which is currently in private beta. If you have any questions about optimizing aspects of your code, this is currently the place to ask them (since everyone is a little overenthusiastic at the moment).

Oh, and +1 for the Notable Physics Results!
  • #20

I updated the Mathematica and Python versions with some reorganization and generalizaiton of the code. The rep products and the branching can now accept reducible reps as inputs, specified as lists of irreducible ones. That makes them like the plethysms.

For a C++ version, I have considered SWIG: Simplified Wrapper and Interface Generator, enabling one to build add-ons written in C/C++ for several programming languages, including Python. However, I've found it to have a rather serious deficiency: it does not transfer arrays back and forth. One would have to do member-by-member transfers.

Another curiosity I've come across is a use of G2 in a context that does not suggest exceptional Lie algebras. Back in 1949, Giulio Racah was trying to analyze f electron states in atoms, and he used the subalgebra chain
U(7) / SU(7) > SO(7) > G2 > SU(2) / SO(3)

With my code, one sets up

By calculating the overall projection matrix, I've found that this chain is equivalent to
For each root vector, add the root-vector components and it becomes the root-vector component for SU(2).

The G2->A1 one is equivalent to a related branching-rule generator
  • #21
I've been working on a C++ version, slowly but surely. I've created lots of template functions for doing the vector and matrix operations, and also template classes for matrices and fractions. I've done that to make them as general as possible. I've also been using the Standard Template Library's classes and functions, because it handles all its memory allocation and deallocation behind the scenes, and because I can create associative arrays without much trouble. I use that to check if some calculated root vector is already present in a list of them.

So far, I've done the algebra-data construction, and the irreducible-representation total degeneracies. I had to use the GNU Multiple Precision library to do bignums because one of my test cases overflowed 64-bit integers during the calculation. 64 bits is the largest size supported by recent C/C++ compilers. Here it is:

Algebra: E8, with Robert Cahn's root order
Max Wts: 0 0 2 0 0 0 0 0
Total Degen: 684252595649750400
It needs only 60 bits, but an intermediate result went past 63 bits, since I was using signed ones.
  • #22
I've got my C++ version working up to where it finds representations as lists of root/weight vectors. Here's C++ vs. Python vs. Mathematica on my 2-GHz Core 2 Duo iMac:

00000010 -- 248
0.056 - 0.406 - 0.466
10000000 -- 3875
0.894 - 5.017 - 5.875
00000020 -- 27000
4.436 - 24.575 - 26.904
00000100 -- 30380
4.232 - 23.876 - 25.963
00000001 -- 147250
14.892 - 82.709 - 86.085

About 6 times faster, while Mma is slightly slower than Python.
  • #23
First, the Python ones were with out-of-the-box Python, without numerical-Python add-ons.

I was compiling without optimization. Let's see what it does with the optimization levels available with gcc: 0, 1, 2, 3.

I've also changed from <sys.time.h> gettimeofday() to <time.h> clock(), for a better measure of CPU time.

Mathematica, Python, C++ 0, C++ 1, C++ 2, C++ 3
Algebra: E8
00000010 -- 248
0.466 - 0.406 - 0.054 - 0.012 - 0.010 - 0.007
10000000 -- 3875
5.875 - 5.017 - 0.811 - 0.183 - 0.163 - 0.113
00000020 -- 27000
26.904 - 24.575 - 3.983 - 0.926 - 0.821 - 0.569
00000100 -- 30380
25.963 - 23.876 - 3.821 - 0.894 - 0.793 - 0.554
00000001 -- 147250
86.086 - 82.709 - 13.308 - 3.219 - 2.857 - 2.022

Speedups relative to the Mma version (last 3 reps):
Python: 1.04 - 1.09
C++ 0: 6.5 - 6.8
C++ 1: 27 - 29
C++ 2: 30 - 33
C++ 3: 43 - 47
  • #24
I'm now getting best-case numbers like 1.6 seconds for E8 00000001 -- ~54 times faster than Mma and Python. It certainly helps to do much of the object management and method dispatch at compile time.

I've updated my archive with my C++ source code and a makefile for a shared library and some test programs. The shared library is what my main code gets compiled into. I have rep powers / plethysms working in it, complicated coding and all, though not branching rules.

I've half-thought of doing a Java version, but since Java does not support operator overloading, a fraction class would be awkward, and I'd have to integerize the matrix inversion. I'm not familiar enough with Perl or Ruby to want to work with those. For a JavaScript demo in a web browser, there's a risk of causing a user's web browser to hang or crash from CPU and memory usage.
  • #25
I'm still in the planning stages for branching rules. The main problem I face is how to code for the special cases in C++, since I can't use the sorts of array values that I can use in Mathematica and Python. I'm thinking of storing the exceptional-algebra special cases in a serialized fashion:

number of algebras, for each subalgebra:
- family, rank, projection matrix expanded as:
- - values in rows and columns, expanded as:
- - - numerator, denominator
This should be straightforward to generate from the Mathematica version.

I could even do all the special cases together in this fashion, giving one big array for the root demotions, one for the extension splittings, and one for the extras. The extras I might specify with enums: SUBALG_EXTRA_B3G2, etc. Again straightforward to generate from the Mathematica version.
  • #26
I've also been trying to calculate something related to polygonal anomalies, generalizations of 4D triangle anomalies. These arise when trying to calculate fermion loops with gauge fields exiting from vertices in those loops.

They exist only for even dimensions, and for D dimensions, they have (D/2-1) vertices. Thus, in 4D, they are triangular, and in 10D, they are hexagonal.

For gauge field i operating on the fermion rep, the gauge operator is Li. For each chirality c, one has to calculate
Lc,ijk = Tr(Li.Lj.Lk)symmetric

for gauge fields i,j,k in 4D, and likewise for other numbers of dimensions. The overall result is
Lijk = LL,ijk - LR,ijk

and it must vanish for the anomaly to disappear. That's a constraint on the Standard Model and extensions of it like Grand Unified Theories.

I have been valiantly searching for general formulas for the likes of Tr(Li.Lj.Lk)symmetric, without success. However, it's easy to calculate for an algebra's Cartan subalgebra, and I'm able to do that with my Lie-algebra code.

One can construct scalar invariants from a Lie algebra, starting with the commutator formula, [Li,Lj] = fijkLk

One first gets a metric, gij = fiabfjba, and if the metric can be inverted, then the algebra is semisimple. So one can find "Casimir invariants", with the quadratic one given by
C = gabLaLb

To extend into higher powers, one takes Fij = fiajgabLb and finds
C(p) = Tr(Fp)

I've found it hard to find general formulas for those, though I've found some in Francesco Iachello's book Lie Algebras and Applications and A. M. Perelomov, V. S. Popov, “Casimir operators for semisimple Lie groups”, Izv. Akad. Nauk SSSR Ser. Mat., 32:6 (1968), 1368–1390. They are for A(n), B(n), C(n), D(n), and G2, with possible extension to E6 and E7, leaving F4 and E8 remaining. I've verified them in the quadratic case, though I've had difficulty doing so for higher powers.

C(1) = 0, C(2) is proportional to the earlier C, and C(p) is a degree-p polynomial in the highest weights. For rank n, there are n independent ones. Here are the lowest ones that form independent sets:
A(n): 2, 3, ..., n+1
B(n), C(n), D(n): 2, 4, ..., 2n
G2: 2, 6
F4: 2, 6, 8, 12
E6: 2, 5, 6, 8, 9, 12
E7: 2, 6, 8, 10, 12, 14, 18
E8: 2, 8, 12, 14, 18, 20, 24, 30
D(n) has the complication that one can form a degree-n polynomial in the highest weights from the independent C(p)'s, a sort of C'(n) that can substitute for C(2n).
  • #27
Hi lpetrich, it's always good to read your updates.

You probably already know about this, but the symbolic manipulation program FORM has been used to calculate a huge number of invariants, Casimirs etc...,
Of course, they don't use Cartan-Weyl basis like I assume your code does, so it's not directly comparable, but maybe of interest. The algorithms that they use can be nicely visualized using "bird tracks" ( I've always wondered whether some similar graphical method would give any insight when using a Cartan-Weyl basis which is neither hermitian nor trace-orthogonal...

Anyway, good luck with it and I look forward to hearing more results!
  • #28
Thanx for those links. However, I couldn't figure out how to get algorithms from Predrag Cvitanovic's "bird track" diagrammatic methods.

Yes indeed I use the Cartan-Weyl basis. I've most recently decided to try to fill in a missing piece in some discussions of it. Here's what the algebra looks like in that basis:

[Hi,Ea] = aiEa
[Ea,E-a] = a.g.H = <a,H>
[Ea,Eb] = Na,bEa+b
for roots a, b != -a, indices i, and metric g
Hi = Cartan subalgebra, generalization of Lz in the ladder-operator development of angular momentum (SO(3) / SU(2))
Ea = raising / lowering operators, again like angular momentum

The big problem is how to compute Na,b. From the Jacobi identities and some symmetries, we have
Na,b = 0 if a+b is not a root in the algebra
Nb,a = - Na,b, N-a,-b = - Na,b, Nb,-a-b = N-a-b,a = Na,b
Na,b2 - Na,-b2 + <a,b> = 0, Na,bNa+b,c + Nb,cNb+c,a + Nc,aNc+a,b = 0
avoiding Na,-a values.

The first two sets of constraints give all the N's in terms of the nonzero N's for a,b being positive roots of the algebra. Of the third set, the first one gives all their values to within signs, and the second one gives their signs. However, many of the signs are undetermined, and for n of them, I get 2n solutions, which easily becomes a strain on Mathematica.

So I decided to calculate their squares instead, and I found unique solutions in every case that I've tried. All the exceptional ones and some infinite-family ones.

Roots equally long: all N2 values = 1
A(n), D(n), E6, E7, E8

len(long root) / len(short root) = 2
B(n), n >= 3: all N2 values = 2
C(n), n >= 2, and F4: N2 values = 1 or 2

len(long root) / len(short root) = 3
G2: N2 values = 3 or 4

Could it be possible to prove these results in general for the infinite families? A help in that could be rewriting one of the identities to
Na+b,b2 - Na,b2 + <a+b,b> = 0
where a and b are both positive roots.
  • #29
I now have some results for the squares of the normalizations, even if not about the signs.

I'll be using as a root basis a set of ei for some range of i, and an identity-matrix metric. The basis size is the rank except where noted.

For A(n), the basis size is (n+1) and the roots are
ei - ej
N(ei-ej, ej-ek)2 = 1
because ei-ek is a root and ei-2ej+ek is not a root.

For D(n), the roots are
+- ei +- ej
By similar arguments, all the nonzero N2's are 1.

For B(n), the roots are
+- ei +- ej and +- ei
By similar arguments, all the nonzero N2's are 1. My code gives 2 because of a different overall size of the metric.

One can do similar general arguments for E6, E7, and E8, though their roots have rather complicated expressions in this basis space. For E8, they can be
+- ei +- ej and (1/2)*(sum of +- e's with even or odd numbers of + and - signs)

For C(n), the roots are
+- ei +- ej and +- 2ei
The N(a,b)'s have different squares for different lengths of a, b, and a+b. By length:
N(s,s,s)2 = 1
N(s,s,l)2 = N(s,l,s)2 = N(l,s,s)2 = 2
s = short, l = long

For F4, the roots are
+- ei +- ej and +- 2ei and (sum of +- e's)
N(s,s,s)2 = 1
N(s,s,l)2 = N(s,l,s)2 = N(l,s,s)2 = 2
N(l,l,l)2 = 2

For G2, the basis size is 3 and the roots are
ei - ej and +- (2ei - ej - ek)
N(s,s,s)2 = 4
N(s,s,l)2 = N(s,l,s)2 = N(l,s,s)2 = 3
N(l,l,l)2 = 3
  • #30
I've returned to implementing the branching in C++. I've implemented the shared part of the setup and all of the operation. This uses my earlier code for decomposing the resulting product-algebra rep into irreps. All that remains is to specify the subalgebras and the projection matrices, and that's been most of the work.

I've done all the root demoters and extension splitters, and I'm taking a break before continuing. But I find it satisfying to see great speed here also.
  • #31
Whew! I finished my C++ versions of all the other branchers that I had implemented in Mma and Python, including the exceptional-algebra special-case ones. Like the rest of my C++ version, it also has great speed. I've also put all its source code into my archive and uploaded it.

I've thought about improvements, like using reference-counted smart pointers for the reps. My code makes copies of them in some cases, something which can eat up RAM.

For further porting, I've found SWIG: Simplified Wrapper and Interface Generator. It's for calling C/C++ from a variety of programming languages. But I don't think I'll bother with that any time soon.
  • #32
I've now implemented multiple root demotion. I think I'll next implement concatenating branchers.

SO(10) 16 spinor rep 00010 -> Standard Model left-handed elementary fermions

MakeMultiRootDemoter[ld,{4,5},{3,5}];MatrixForm[{#[[1]],#[[2,1]],#[[2,2]],(1/6)*#[[2,3]]-#[[2,4]],-(2/3)*#[[2,3]]}& /@ DoBranching[ld,{0,0,0,1,0}]]

1	{0,0}	{1}	-(1/2)	-1
1	{0,1}	{0}	-(2/3)	-(1/3)
1	{0,1}	{0}	1/3	-(1/3)
1	{1,0}	{1}	1/6	1/3
1	{0,0}	{0}	0	1
1	{0,0}	{0}	1	1
Multiplets: left-handed lepton, ap of right-handed up quark, ap of right-handed down quark, left-handed quark, ap of right-handed neutrino, ap of right-handed electron
ap = antiparticle

Degeneracy / multiplicity
QCD multiplet: 10: 3, 01: 3*
Weak-isospin multiplet: 0: 0, 1: 1/2
Weak hypercharge
Baryon number - lepton number
  • #33
I've done the brancher concatenation and brancher relabeling, for B2 <-> C2, A3 <-> D3, A1^2 <-> D2, etc. I've made the C++ version nearly feature-complete with the Python one, which has nearly all the non-graphical parts of the Mathematica code.

With my multiroot demoter, I think that I can retire my single-root demoter, with all its special-casing. For my extension splitter, I've found a way of calculating part of it that does not rely on special casing.

I've also added Giulio Racah's use of G2 in SU(7) -> SO(7) -> G2 -> SU(2), and showed that my code can do it in one step.

The link to my archive again: [Broken]
Last edited by a moderator:
  • #34
I've updated my archive with my latest work.

I've worked out a general expression for the projection matrices for root demotion and extension splitting, and I've updated my branching code appropriately. I've succeeded in retiring a lot of special cases that I'd laboriously derived some months back, but at least my code is conceptually better justified.

In weight space, the projection matrices for root demotion are:
P(original index, subalgebra index) = 1 for an original root with a subalgebra root assigned to it, and 0 otherwise

The demoted root makes a U(1) that gets its root-space value, not its weight-space value.

Extension splitting adds:
P(original index, subalgebra index) = (extension vector)(original index) if the extension root was assigned to the subalgebra root

The extension vector is given as follows:
Take the main diagonal of the metric, make it MetDiag.
Divide MetDiag by the maximum value in it, giving NormMetDiag.

Of the original algebra's positive root vectors, find the one with the greatest sum or height: MaxPosRoot. Its corresponding weight vector is the highest-weight one for the algebra's adjoint representation.

The extension vector = - (component-by-component MaxPosRoot*NormMetDiag)
It should be a vector of integers.

I've succeeded in implementing extension splitting for A(n), and it works for A1 ~ B1 ~ C1 also. As expected, it does A(n) -> A(n). For A1, it reverses the root/weight values, multiplying them by -1.
  • #35
I first wish to announce that my archive now has a new home: Its old home will be going away in a month.

I've also found that simple Lie algebras have these possible subalgebras, which contain all the maximal ones:
  • Root demotion: roots to U(1) factors, splitting the algebra.
  • Extension splitting: adding an extension root, then removing a root, which may split the algebra.
  • SO(even) -> SO(odd)*SO(odd) where the odd numbers add up to the even number.
  • From the above, SO(sum of n's) -> product of SO(each n).
  • From the above, Sp(sum of n's) -> product of Sp(each n).
  • SU(product of n's) -> product of SU(each n).
  • SO(product of n's) -> product of SO(each n) -- each n and the product can be negative, with SO(-n) -> Sp(n).
  • Any semisimple algebra -> SU(2) -- height of each root vector (sum of its components) -> root of SU(2) rep.
  • SU(n) -> SO(n) or Sp(n)
  • More generally, SU(n), SO(n), or Sp(n) -> simple subalgebra with a n-D irrep. The subalgebra can be one of the exceptional ones. A n-D fundamental irrep of the original gets mapped onto that subalgebra irrep. That irrep's reality:
    • SU(n): real, pseudoreal, complex
    • SO(n): real
    • Sp(n): pseudoreal
    The original's adjoint must get mapped onto a rep that contains the adjoint.
  • Some exceptional-algebra subalgebras, like E8 -> F4*G2 -- 248 -> (52,1) + (1,14) + (26,7).
Note: SU(1) and SO(1) are singlet null algebras, and SO(2) ~ U(1).

Rep reality:
  • Real: self-conjugate, height even.
    • Symmetric square of rep: contains singlet -- invariant 2-form.
    • Antisymmetric square of rep: contains adjoint (true in some cases; true in general?).
  • Pseudoreal: self-conjugate, height odd.
    • Symmetric square of rep: contains adjoint (true in some cases; true in general?).
    • Antisymmetric square of rep: contains singlet -- invariant 2-form.
  • Complex: conjugate is distinct. Product of rep and conjugate contains the adjoint and a singlet (both true in some cases; true in general?).
Height of rep: height of max root vector - height of min root vector

Suggested for: Lie-algebra representation powers - plethysms

  • Last Post
  • Last Post
  • Last Post
  • Last Post
  • Last Post