Lie derivative of tensor field with respect to Lie bracket

Click For Summary
SUMMARY

The Lie derivative of a tensor field \( t \) along the Lie bracket \( [X,Y] \) is expressed as \( \mathcal{L}_{[X,Y]}t = \mathcal{L}_{X}\mathcal{L}_{Y}t - \mathcal{L}_{Y}\mathcal{L}_{X}t \). The discussion emphasizes the importance of expanding \( t \) in a coordinate basis and applying properties of the Lie derivative. The participants suggest starting with simpler cases, such as functions and vector fields, before tackling arbitrary tensors. The use of Cartan's formula is also recommended for handling one-forms.

PREREQUISITES
  • Understanding of Lie derivatives and their properties
  • Familiarity with tensor fields and their representations
  • Knowledge of Cartan's formula for differential forms
  • Basic concepts of vector fields and Lie brackets
NEXT STEPS
  • Study the application of Cartan's formula in detail
  • Learn about the properties of Lie brackets in vector fields
  • Explore the derivation of the Lie derivative for functions and vector fields
  • Investigate the expansion of tensors in coordinate bases for practical applications
USEFUL FOR

Mathematicians, physicists, and students specializing in differential geometry, particularly those working with tensor analysis and Lie derivatives.

"Don't panic!"
Messages
600
Reaction score
8
I'm trying to show that the lie derivative of a tensor field ##t## along a lie bracket ##[X,Y]## is given by \mathcal{L}_{[X,Y]}t=\mathcal{L}_{X}\mathcal{L}_{Y}t-\mathcal{L}_{Y}\mathcal{L}_{X}t

but I'm not having much luck so far. I've tried expanding ##t## on a coordinate basis, such that ##t=t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}## and then using the properties \mathcal{L}_{X}t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}=X\left[t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right] and \mathcal{L}_{X}\left(\partial_{\mu_{i}}\otimes dx^{\nu_{j}}\right)=\left(\mathcal{L}_{X}\partial_{\mu_{i}}\right)\otimes dx^{\nu_{j}}+\partial_{\mu_{i}}\otimes \left(\mathcal{L}_{X}dx^{\nu_{j}}\right) In doing so, I end up with \left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)t=\mathcal{L}_{X}\mathcal{L}_{Y}t-\mathcal{L}_{Y}\mathcal{L}_{X}t\\=[X,Y]\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\partial_{\mu_{1}}\right)\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+\cdots +t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\partial_{\mu_{m}}\right)\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)dx^{\nu_{1}}\right)\otimes dx^{\nu_{m}}+\cdots +t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)dx^{\nu_{m}}\right)\\ =[X,Y]\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\ =\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)

Now, if t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)=t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\mathcal{L}_{[X,Y]}\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right) then I arrive at the required result as \mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\mathcal{L}_{[X,Y]}\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}t

but if not, then I'm stumped (at the moment) as to what to do next?!

Also, if what I've done is correct it still seems a little sloppy - is there a nicer way to show it?

Any help would be much appreciated.
 
Last edited:
Physics news on Phys.org
Maybe you should focus on simpler cases, rather than trying to do a whole arbitrary tensor at once. You ought to be able to show

$$\mathcal{L}_{[X,Y]} f = (\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X) f$$
where ##f## is a function. Then show

$$\mathcal{L}_{[X,Y]} Z = (\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X) Z$$
where ##Z## is a vector field. Then show

$$\mathcal{L}_{[X,Y]} \alpha = (\mathcal{L}_X \mathcal{L}_Y - \mathcal{L}_Y \mathcal{L}_X) \alpha$$
where ##\alpha## is a 1-form. You can choose

$$Z = \partial_\mu, \qquad \alpha = d x^\mu$$
if you like.

Once you can show those, then use

$$\mathcal{L}_X (T \otimes S) = (\mathcal{L}_X T) \otimes S + T \otimes (\mathcal{L}_X S)$$
to prove the general case by induction.
 
Ben Niehoff said:
Maybe you should focus on simpler cases, rather than trying to do a whole arbitrary tensor at once. You ought to be able to show

OK, good idea. Here it goes...

1. ##\mathcal{L}_{[X,Y]}f=\mathcal{L}_{X}\mathcal{L}_{Y}f-\mathcal{L}_{Y}\mathcal{L}_{X}f##.

To start, note that ##\mathcal{L}_{X}f=X[f]##. Given this, it follows that \mathcal{L}_{X}\mathcal{L}_{Y}f-\mathcal{L}_{Y}\mathcal{L}_{X}f=\mathcal{L}_{X}Y[f]-\mathcal{L}_{Y}X[f]=X[Y[f]]-Y[X[f]]=[X,Y][f]=\mathcal{L}_{[X,Y]}f

2. ##\mathcal{L}_{[X,Y]}Z=\mathcal{L}_{X}\mathcal{L}_{Y}Z-\mathcal{L}_{Y}\mathcal{L}_{X}Z##.

Note that ##\mathcal{L}_{X}Y=[X,Y]##. Then, we have \mathcal{L}_{X}\mathcal{L}_{Y}Z-\mathcal{L}_{Y}\mathcal{L}_{X}Z = \mathcal{L}_{X}[Y,Z]-\mathcal{L}_{Y}[X,Z] =[X,[Y,Z]]-[Y,[X,Z]]=XYZ-ZYX-YXZ+ZXY=[[X,Y],Z]=\mathcal{L}_{[X,Y]}Z

I have to admit, I'm not exactly sure how to proceed with the one-form case?!
 
Last edited:
"Don't panic!" said:
I have to admit, I'm not exactly sure how to proceed with the one-form case?!

For that, you might need Cartan's formula:

##\mathcal{L}_X \alpha = d (\iota_X \alpha) + \iota_X (d \alpha)##
 
Ben Niehoff said:
For that, you might need Cartan's formula:

L=d(ιXα)+ιX()

Thanks for the tip.

So, starting with the interior product ##\iota_{X} :\Omega^{r}(M)\rightarrow\Omega^{r-1}(M)## of some ##r##-form ##\omega\in\Omega^{r}(M)## with respect to a vector field ##X\in\mathscr{X}(M)## (where ##\mathscr{X}## is the set of all vector fields on ##M##) $$\iota_{X}\omega(X_{1},\ldots,X_{r-1})\equiv\omega(X,X_{1},\ldots,X_{r-1})$$ For ##X=X^{\mu}\partial_{\mu}## and ##\omega=\frac{1}{r!}\omega_{\mu_{1}\cdots\mu_{r}}dx^{\mu_{1}}\wedge\cdots\wedge dx^{\mu_{r}}##, we have $$\iota_{X}\omega=\frac{1}{(r-1)!}X^{\nu}\omega_{\nu\mu_{2}\cdots\mu_{r}}dx^{\mu_{2}}\wedge\cdots\wedge dx^{\mu_{r}}$$ From this it follows that $$\iota_{[X,Y]}\omega\left(X_{2},\ldots,X_{r}\right)=\frac{1}{(r-1)!}[X,Y]^{\nu}\omega_{\nu\mu_{2}\cdots\mu_{r}}X_{2}^{\mu_{2}}\cdots X_{r}^{\mu_{r}}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ =\frac{1}{(r-1)!}\left(X^{\lambda}\partial_{\lambda}Y^{\nu}-Y^{\lambda}\partial_{\lambda}X^{\nu}\right)\omega_{\nu\mu_{2}\cdots\mu_{r}}X_{2}^{\mu_{2}}\cdots X_{r}^{\mu_{r}}\qquad\qquad\qquad\\=\frac{1}{(r-1)!}\left(X^{\lambda}\partial_{\lambda}Y^{\nu}\right)\omega_{\nu\mu_{2}\cdots\mu_{r}}X_{2}^{\mu_{2}}\cdots X_{r}^{\mu_{r}}-\frac{1}{(r-1)!}\left(Y^{\lambda}\partial_{\lambda}X^{\nu}\right)\omega_{\nu\mu_{2}\cdots\mu_{r}}X_{2}^{\mu_{2}}\cdots X_{r}^{\mu_{r}}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\\ $$
Now, I know this should be equal to ##X\left(\iota_{Y}\omega\right)-Y\left(\iota_{X}\omega\right)##, but I'm unsure how to proceed to this result from where I'm up to at the moment?
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K
Replies
0
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K