"Don't panic!"
- 600
- 8
I'm trying to show that the lie derivative of a tensor field ##t## along a lie bracket ##[X,Y]## is given by \mathcal{L}_{[X,Y]}t=\mathcal{L}_{X}\mathcal{L}_{Y}t-\mathcal{L}_{Y}\mathcal{L}_{X}t
but I'm not having much luck so far. I've tried expanding ##t## on a coordinate basis, such that ##t=t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}## and then using the properties \mathcal{L}_{X}t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}=X\left[t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right] and \mathcal{L}_{X}\left(\partial_{\mu_{i}}\otimes dx^{\nu_{j}}\right)=\left(\mathcal{L}_{X}\partial_{\mu_{i}}\right)\otimes dx^{\nu_{j}}+\partial_{\mu_{i}}\otimes \left(\mathcal{L}_{X}dx^{\nu_{j}}\right) In doing so, I end up with \left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)t=\mathcal{L}_{X}\mathcal{L}_{Y}t-\mathcal{L}_{Y}\mathcal{L}_{X}t\\=[X,Y]\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\partial_{\mu_{1}}\right)\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+\cdots +t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\partial_{\mu_{m}}\right)\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)dx^{\nu_{1}}\right)\otimes dx^{\nu_{m}}+\cdots +t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)dx^{\nu_{m}}\right)\\ =[X,Y]\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\ =\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)
Now, if t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)=t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\mathcal{L}_{[X,Y]}\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right) then I arrive at the required result as \mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\mathcal{L}_{[X,Y]}\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}t
but if not, then I'm stumped (at the moment) as to what to do next?!
Also, if what I've done is correct it still seems a little sloppy - is there a nicer way to show it?
Any help would be much appreciated.
but I'm not having much luck so far. I've tried expanding ##t## on a coordinate basis, such that ##t=t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}## and then using the properties \mathcal{L}_{X}t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}=X\left[t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right] and \mathcal{L}_{X}\left(\partial_{\mu_{i}}\otimes dx^{\nu_{j}}\right)=\left(\mathcal{L}_{X}\partial_{\mu_{i}}\right)\otimes dx^{\nu_{j}}+\partial_{\mu_{i}}\otimes \left(\mathcal{L}_{X}dx^{\nu_{j}}\right) In doing so, I end up with \left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)t=\mathcal{L}_{X}\mathcal{L}_{Y}t-\mathcal{L}_{Y}\mathcal{L}_{X}t\\=[X,Y]\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\partial_{\mu_{1}}\right)\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+\cdots +t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\partial_{\mu_{m}}\right)\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)dx^{\nu_{1}}\right)\otimes dx^{\nu_{m}}+\cdots +t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes\left(\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)dx^{\nu_{m}}\right)\\ =[X,Y]\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\ =\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)
Now, if t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)=t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\mathcal{L}_{[X,Y]}\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right) then I arrive at the required result as \mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\left(\mathcal{L}_{X}\mathcal{L}_{Y}-\mathcal{L}_{Y}\mathcal{L}_{X}\right)\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\right)\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}+t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\mathcal{L}_{[X,Y]}\left(\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}\left(t^{\mu_{1}\cdots\mu_{n}}_{\;\;\;\;\nu_{1}\cdots\nu_{m}}\partial_{\mu_{1}}\otimes\cdots\otimes\partial_{\mu_{m}}\otimes dx^{\nu_{1}}\otimes dx^{\nu_{m}}\right)\\=\mathcal{L}_{[X,Y]}t
but if not, then I'm stumped (at the moment) as to what to do next?!
Also, if what I've done is correct it still seems a little sloppy - is there a nicer way to show it?
Any help would be much appreciated.
Last edited: