oksuz_ said:
My aim is to track the emitted light originated from the neutron-scintillator interaction.
I don't believe MCNP directly calculates the optical (from scintillation) response from the medium. However, LANL, which maintains MCNP is developing a tool-kit to enable the calculation of the detector response. The model is called DRiFT.
https://mcnp.lanl.gov/pdf_files/la-ur-16-27166.pdf
• DRiFT treats each particle separately to properly determine the amplitude and shape of the resulting pulse.
• The PTRAC particle’s electron equivalent energy (MeVee) is determined for the specific particle type and original energy using quenching data specified in input.
• The scintillation yield (12,000 photons/MeVee for EJ-301) is used to determine the mean number of photons produced.
So it is matter of determining the photon per MeVee, which I take to be the energy dissipated by the particle interaction. In your case, the energy will come from the recoil of a proton by the neutron, which you can model with MCNP.
Various authors cite: Aoyama, T.; Honda, H.; Kudo, C.M.; Takeda, N. Energy response of a full-energy-absorption neutron spectrometer using boron-loaded liquid scintillator BC-523. Nuclear Instruments & Methods in Physics Research, Sections A: Accelerators, Spectrometers, Detectors and Associated Equipment. 333A: 492-501; 1993.
Apparentley Aoyama et al used MCNP to model a scintillation detector, which used BC-523. That relies on (n,α) reaction with boron, whereas one is attempting to model an (n,p) reaction.