LIGO and speed of propagation of gravity

Click For Summary

Discussion Overview

The discussion centers around the implications of the LIGO results on the speed of gravitational wave propagation, particularly in relation to the speed of light. Participants explore the methods used to measure time delays in gravitational waves and the potential for future measurements to refine these estimates.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants suggest that the LIGO results provide indirect evidence that gravitational effects propagate at the speed of light, but question the extent to which this is directly tested by the data.
  • There is a discussion about the time delay observed in the GW150914 event and its implications for the speed of gravitational waves, with some arguing that it does not conclusively measure the speed of gravity.
  • Some participants propose that future gravitational wave events correlated with electromagnetic signals could provide clearer evidence regarding the speed of gravitational waves.
  • Concerns are raised about the accuracy of time stamps and the need for additional detectors to improve measurements of gravitational wave speed.
  • One participant mentions a paper suggesting a gamma-ray burst counterpart to the gravitational wave signal, which could indicate that gravitational waves travel at the speed of light with high accuracy.
  • There are discussions about how the orientation of the interferometers affects the determination of the source's direction and polarization from the gravitational wave signal.
  • Some participants explore the possibility of separating time delay and phase delay measurements due to the frequency chirp of the signal, which could provide additional insights into the speed of gravitational waves.
  • A later reply references a paper that constrains the speed of gravitational waves to be less than 1.7 times the speed of light, suggesting that this is a better constraint than previously expected.

Areas of Agreement / Disagreement

Participants express a mix of agreement and disagreement regarding the implications of the LIGO results. While some acknowledge that the speed of gravitational waves is consistent with the speed of light, others argue that the measurements do not provide a definitive conclusion about the speed of gravity. The discussion remains unresolved with multiple competing views.

Contextual Notes

Participants note limitations in the accuracy of time measurements and the dependence on the configuration of detectors for precise measurements. There are also unresolved questions about how polarization and direction can be determined from the same signal.

bcrowell
Staff Emeritus
Science Advisor
Insights Author
Messages
6,723
Reaction score
431
Before the recent LIGO result, there was already not much doubt that gravitational effects propagated at c, but the evidence was indirect. To what extent does the LIGO result test this directly, and how will this be improved in the future?

The H1 and L1 instruments are separated by 3002 km, which corresponds to ##T=10## ms at the speed of light. The time delay for a signal propagating at speed ##v## and arriving from an angle ##\theta## with respect to the H1-L1 line would be ##T(c/v)\cos\theta##. The actual time delay in the GW150914 events was 7 ms (caption to fig. 1 in the PRL paper). So I guess this doesn't actually test anything. If the time delay had been *longer* than ##T##, then it would have falsified GR's prediction of ##v=c## by proving ##v<c##.

I suppose if they see a statistically significant number of events, then comparing the probability distribution of the time delays with a statistical prediction of the curve should give a measurement of ##v##.

They localized the source of GW150914 to a certain arc (less than a full circle) in the sky. I haven't seen any details of how this was done, but my guess is that they assume ##v=c## to determine##\theta##, and probably polarization constraints eliminate part of the resulting circle...?? Once the European detectors come online, are there good prospects for doing triangulation, so that we would get an independent measurement of ##\theta##?

The LIGO result puts strict limits on dispersion, so in that sense it gives us a direct determination of possible *differences* between values of ##v## for waves of different frequencies.

If future gravitational wave events can be correlated with electromagnetic signals such as gamma-ray bursts, I guess that would also be pretty clear evidence.
 
Physics news on Phys.org
bcrowell said:
my guess is that they assume ##v=c## to determine ##\theta##,

This would be my guess as well, based on other discussions of the subject that I have read (for example, Thorne's description of how LIGO would work in Black Holes and Time Warps).
 
I posted this on another thread.

Vanadium 50 said:
m going to disagree a little with mfb on point (2). He's correct that this experiment doesn't measure the speed of gravity. However, there is still information. The speed of gravity has to be less than the distance between Richland and Livingston, which is about 1850 miles, divided by the difference in time, which is less than 10 ms. So that gives as a ballpark estimate of within a factor of a few of 185,000 miles per second.

So, while a single measurement is not very constraining, it shows that the speed of gravitational radiation is of the same order as the speed of light.

The problem is not the local accuracy of clocks - the problem is the exact time stamp of the signal. I don't think you can do a whole lot better than 10ms identification of any structure. Maybe one could get 5ms statistically. You need a 3rd station, and more importantly, that third station has to be far away.
 
  • Like
Likes   Reactions: Christopher Low and bcrowell
Vanadium 50 said:
I posted this on another thread.
The problem is not the local accuracy of clocks - the problem is the exact time stamp of the signal. I don't think you can do a whole lot better than 10ms identification of any structure.

The caption to Fig. 1 of the PRL paper gives the time delay as ##6.9^{+0.5}_{-0.4}## ms.
 
Vanadium 50 said:
So, while a single measurement is not very constraining, it shows that the speed of gravitational radiation is of the same order as the speed of light.

Strictly speaking, it's consistent with a speed of 1 m/s, but if the speed were 1 m/s, the probability of a delay as small as 7 ms would be very small.
 
Aha! I think I know how they did that. They have about 12 maxima, 12 minima and 24 zeros, so each signal of this size - which was freakishly loud - has ~50 measurements. So they do 7 times better than any single measurement. Probably even better, since these are not independent.

I also think you might want a 4th station to do a precision measurement of the speed of gravity waves. The wave has a speed and two independent direction cosines. Three stations give you two delta t's - so it doesn't fully constrain the system. While you can move the uncertainty into one combination of angles, I think you'd have a much better measurement of c if you didn't have that degree of freedom. A 5th station would get you an uncertainty on the velocity.
 
  • Like
Likes   Reactions: BiGyElLoWhAt, ShayanJ, Ibix and 1 other person
Another possible method occurs to me by which they could have restricted the direction of the source to an arc rather than a full circle. The two interferometers are not oriented the same way. Therefore the ratio of their gains will depend on the direction from which the signal is coming.
 
bcrowell said:
Therefore the ratio of their gains will depend on the direction from which the signal is coming.

And the initial polarization. How do you get both numbers from a single measurement?
 
  • #10
Vanadium 50 said:
And the initial polarization. How do you get both numbers from a single measurement?

Clearly the observations are going to depend on both factors, polarization and direction of propagation. Evidently they were able to restrict the solution space enough to rule out part of the circle in the sky that was inferred from propagation delay.

It doesn't seem to me to be impossible in principle to get both polarization and direction from the same signal. For example, suppose that the time delay had been very close to 10 ms, and the ratio of the gains of the two detectors had been such that ##I_{H1}\ll I_{L1}##. Then we could conclude that the direction lay along the H1-L1 line, and also that the polarization was very nearly the one that would make H1 have zero gain. But that's a special case.

In general, it seems like you have two numbers you measure: the time delay and ##I_{H1}/ I_{L1}##. If the waves are highly polarized, then there is a three-dimensional space for direction and polarization, so we expect these two observables to restrict us to a one-dimensional subset of that three-dimensional space. That may be what happened here, since the arc they draw on the sky is one-dimensional; if so, then it seems based on counting d.f. that they would also know the polarization for this event...?
 
Last edited:
  • #11
On page 4 of this paper, they say, "This reconstructs sky position using a combination of information associated with the triggers: the times, phases and amplitudes of the signals at arrival at each detector." If the signal were a single frequency, the time delay and phase delay would be degenerate, but since the signal chirps in frequency, I think they can separately determine the time delay and phase delay, at least within limits. If you look at Figure 1 from the PRL paper, it is clear that the time delay between the different peaks is not constant between H1 and L1. I think it is these slight differences in time delay as a function of frequency that they are using to tease out both a time delay and a phase difference.
 
  • Like
Likes   Reactions: ShayanJ and bcrowell
  • #12
S.Daedalus said:
...
And indeed, somebody has already spun that observation into a paper: On constraining the speed of gravitational waves following GW150914. They arrive at a speed for gravitational waves ##\lesssim 1.7 c##, which is actually a better constraint than I would have expected.
This paper, mentioned in another thread ( https://www.physicsforums.com/threads/advanced-ligo-detection.836670 page 10, post #190) is relevant here.
The authors consider the minimal value of the time delay within two-sigma deviation from the mean. They get
cgw <= 1.7 c as an upper bound on the speed of gravitational waves, cgw.
 
  • #13
aabottom said:
This paper, mentioned in another thread ( https://www.physicsforums.com/threads/advanced-ligo-detection.836670 page 10, post #190) is relevant here.
The authors consider the minimal value of the time delay within two-sigma deviation from the mean. They get
cgw <= 1.7 c as an upper bound on the speed of gravitational waves, cgw.

That's pretty silly.

The upper bound if 1.7c is obvious if you just read the LIGO paper.

They also give a lower bound, but the lower bound is (a) just repeating a result from someone else's previous paper, and (b) model-dependent.
 
  • #14
phyzguy said:
Have you seen this paper?

http://gammaray.nsstc.nasa.gov/gbm/publications/preprints/gbm_ligo_preprint.pdf

They claim a possible gamma ray burst counterpart received 0.4s after the gravitational wave signal. If this is real, it say that gravitational waves travel at c to a high level of accuracy. I guess we'll just have to wait for more events to be sure it isn't just a coincidence.
Another paper using the same coincidence between the gamma ray signal and the LIGO event by John Ellis et al. claims to constrain the difference between the speed of light and that of gravity to within a factor of ##10^{-17}## (!).
 
  • #15
S.Daedalus said:
Another paper using the same coincidence between the gamma ray signal and the LIGO event by John Ellis et al. claims to constrain the difference between the speed of light and that of gravity to within a factor of ##10^{-17}## (!).
The dispersion relation for gravitons has been studied by LIGO, with an upper limit of m<1.2*10-22 eV. Combine it with the known upper limits on a photon mass (10-18 eV quite model-independent, 10-26 with some model-dependence) and you get even better constraints. And those constraints do not rely on Fermi data and the common origin of the events.
 
  • Like
Likes   Reactions: vanhees71 and S.Daedalus
  • #16
I would think the best estimate of the delay would be to look at the auto-correlation coefficient for both signals, i.e. if our two signals are f(t) and g(t), we find the value of ##\tau## that maximizes ##\int f(u)g(u+\tau)du##

I don't know how the error bars are calculated, exactly, the simplest calculation would assume there is a signal plus white gaussian noise (better cacluations might have a better/different noise model, such as noise with a different frequency spectrum, conceptually on processes white Gaussian noise through some frequency shaping filter), and then find the statistical variation in the autocorrelation function due to the noise.

The applicable theory would be in engineering terms "random processes".
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 42 ·
2
Replies
42
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 26 ·
Replies
26
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 60 ·
3
Replies
60
Views
7K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 40 ·
2
Replies
40
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K