Proving the Relationship between Lim Sup and Lim Inf

  • Thread starter Thread starter fishturtle1
  • Start date Start date
  • Tags Tags
    Proof
Click For Summary
SUMMARY

The discussion centers on proving the equivalence of the limits, specifically that ##\limsup \vert s_n \vert = 0## if and only if ##\lim s_n = 0##. The proof involves using the definitions of limit superior and limit inferior, as well as the properties of sequences in real numbers. Key steps include demonstrating that if ##\lim s_n = 0##, then ##\limsup \vert s_n \vert = 0## follows directly, and vice versa, by applying the definitions rigorously and ensuring that the supremum of the sequence converges to zero.

PREREQUISITES
  • Understanding of limit superior and limit inferior in sequences.
  • Familiarity with the epsilon-delta definition of limits.
  • Knowledge of properties of real sequences and their convergence.
  • Ability to manipulate inequalities and understand supremum and infimum concepts.
NEXT STEPS
  • Study the definitions and properties of limit superior and limit inferior in more depth.
  • Explore the epsilon-delta definition of limits and its applications in proofs.
  • Learn about monotonic sequences and their convergence properties.
  • Investigate theorems related to the convergence of subsequences and their implications.
USEFUL FOR

Mathematics students, particularly those studying real analysis, educators teaching limit concepts, and anyone interested in the rigorous foundations of sequence convergence.

fishturtle1
Messages
393
Reaction score
82

Homework Statement


Prove the ##\limsup \vert s_n \vert = 0## iff ##\lim s_n = 0##.

Homework Equations


##\limsup s_n = \lim_{N\rightarrow \infty} \sup \lbrace s_n : n > N \rbrace = \sup \text{S}##

##\liminf s_n = \lim_{N\rightarrow \infty} \inf \lbrace s_n : n > N \rbrace = \inf \text{S}##

Definition of limit: ##\lim s_n = L## iff For all ##\varepsilon > 0## there exists ##N(\varepsilon)## such that ##n > N(\varepsilon)## implies ##\vert s_n - L \vert < \varepsilon##.

The Attempt at a Solution


##(\leftarrow)## Suppose ##\lim s_n = 0##. Then for all ##\varepsilon > 0## there exists ##N(\varepsilon)## such that ##\vert s_n - 0 \vert = \vert s_n \vert < \varepsilon##. So ##\vert \vert s_n \vert \vert < \varepsilon##. So ##\lim \vert s_n \vert = 0##. Since ##\lim \vert s_n \vert = 0 \epsilon \mathbb{R}##, we can say ##\limsup \vert s_n \vert = 0##.

##(\rightarrow)## Suppose ##\limsup \vert s_n \vert = 0##.
 
Physics news on Phys.org
fishturtle1 said:

Homework Statement


Prove the ##\limsup \vert s_n \vert = 0## iff ##\lim s_n = 0##.

Homework Equations


##\limsup s_n = \lim_{N\rightarrow \infty} \sup \lbrace s_n : n > N \rbrace = \sup \text{S}##

##\liminf s_n = \lim_{N\rightarrow \infty} \inf \lbrace s_n : n > N \rbrace = \inf \text{S}##

Definition of limit: ##\lim s_n = L## iff For all ##\varepsilon > 0## there exists ##N(\varepsilon)## such that ##n > N(\varepsilon)## implies ##\vert s_n - L \vert < \varepsilon##.

The Attempt at a Solution


##(\leftarrow)## Suppose ##\lim s_n = 0##. Then for all ##\varepsilon > 0## there exists ##N(\varepsilon)## such that ##\vert s_n - 0 \vert = \vert s_n \vert < \varepsilon##. So ##\vert \vert s_n \vert \vert < \varepsilon##. So ##\lim \vert s_n \vert = 0##. Since ##\lim \vert s_n \vert = 0 \epsilon \mathbb{R}##, we can say ##\limsup \vert s_n \vert = 0##.
|
##(\rightarrow)## Suppose ##\limsup \vert s_n \vert = 0##.
The step from ##\lim |s_n|=0## to ##\sup S = 0## is a bit of a cheat. You have ##|s_n| < \varepsilon## for all ##n > N_\varepsilon##. Now can you choose a series of ##\varepsilon## such that ##\{|s_n|\, : \,n> N_\varepsilon\}## is bounded in a way that shows that these boundaries converge to zero?

This should also be your strategy in the other direction: use the definitions and make yourself clear, what has to be shown. Just claiming things isn't a proof, although the result is expected.
 
fresh_42 said:
The step from ##\lim |s_n|=0## to ##\sup S = 0## is a bit of a cheat. You have ##|s_n| < \varepsilon## for all ##n > N_\varepsilon##. Now can you choose a series of ##\varepsilon## such that ##\{|s_n|\, : \,n> N_\varepsilon\}## is bounded in a way that shows that these boundaries converge to zero?

This should also be your strategy in the other direction: use the definitions and make yourself clear, what has to be shown. Just claiming things isn't a proof, although the result is expected.
Thanks for the reply,

Since ##\lim s_n = 0##, the supremums of ##(s_k)## where ##k \ge n## must be getting smaller and smaller since ##s_k##'s are getting smaller and smaller...

Thm. 11.4 from the text: Every sequence ##(s_n)## has a monotonic subsequence.

So consider a monotonic subsequence ##s_{n_k}## that converges to 0. Then ##\limsup s_{n_k} = 0##. Is this what you meant? Edit: no. This is just the same argument I used before... So should I look for a subsequence of ##N_\varepsilon## or a subsequence of ##s_n##?
 
I'm not sure, if I make it too complicated or not. Say ##S_N := \{s_n\, : \,n>N\}## and ##\varepsilon >0##. Then there is a ##N## with ##|s_n|<\varepsilon ## for all ##n>N##, if we assume ##\lim_{n \to \infty} s_n=0\,.## This means all elements of ##S_N## are between ##\pm \varepsilon##. So ##\sup S_N < \varepsilon##. Now to guarantee that all ##\sup S_n## for ##n>N## are also bounded by ##\varepsilon##, I think we need the observation that ##\sup S_n < \sup S_N## for ##n>N## because ##S_n\subseteq S_N##. Now the sequence ##(S_n)_{n \in \mathbb{N}}## fulfills the ##\varepsilon -##criterion for convergence to zero.

I apologize, if you meant this. I think I was a bit confused. My first thought was to choose ##\varepsilon = \frac{1}{N}##, but then we only have some ##S_{M(N)} < \frac{1}{N}## and it is not immediately obvious, that the convergence of this subsequence ##(S_{M(N)})_N## implies the convergence of ##(S_N)_N## as a whole. E.g. ##a_n=(-1)^n## has also convergent subsequences, but doesn't converge as a whole.

Have you tried the other direction in the meantime?
 
fresh_42 said:
I'm not sure, if I make it too complicated or not. Say ##S_N := \{s_n\, : \,n>N\}## and ##\varepsilon >0##. Then there is a ##N## with ##|s_n|<\varepsilon ## for all ##n>N##, if we assume ##\lim_{n \to \infty} s_n=0\,.## This means all elements of ##S_N## are between ##\pm \varepsilon##.
Ok i see how you got here,

fresh_42 said:
So ##\sup S_N < \varepsilon##. Now to guarantee that all ##\sup S_n## for ##n>N## are also bounded by ##\varepsilon##, I think we need the observation that ##\sup S_n < \sup S_N## for ##n>N## because ##S_n\subseteq S_N##. Now the sequence ##(S_n)_{n \in \mathbb{N}}## fulfills the ##\varepsilon -##criterion for convergence to zero.
Why does ##S_n\subseteq S_N## mean that we need the observation that ##\sup S_n < \sup S_N## for ##n>N##?

What would prove ##\limsup s_n = 0##? I think we need to take a sequence of all ##sup (s_n : n > k)## and then see where their limit is, but how?

fresh_42 said:
Have you tried the other direction in the meantime?

I have a theorem from a previous chapter:
Let ##(s_n)## be a sequence in ##\mathbb{R}##.
i) If ##\lim s_n## is defined[ as a real number, ##+\infty, -\infty##], then ##\liminf s_n = \lim s_n = \limsup s_n##.
ii) If ##\liminf s_n = \limsup s_n,## then ##\lim s_n## is defined and ##\lim s_n = \liminf s_n = \limsup s_n##.

So to show the other direction,
Suppose ##\limsup \vert s_n \vert = 0##. We want to show ##\liminf \vert s_n \vert = 0##. This seems reasonable because ##\vert s_n \vert \ge 0## and since the ##\sup (s_n : n > k)## keeps getting closer and closer to 0, then ##\vert s_n \vert##'s should be getting closer and closer to 0, but can't get smaller than 0.
 
fishturtle1 said:
Why does ##S_n\subseteq S_N## mean that we need the observation that ##\sup S_n < \sup S_N## for ##n>N##?
For ##n > N## we have ##S_n \subseteq S_N##, because ##S_N = S_n \cup \{s_{N+1},s_{N+2}, \ldots , s_{n-1},s_{n}\}## so the supremum of ##S_N## is eventually greater than the supremum of ##S_n## in case the set ##\{s_{N+1},s_{N+2}, \ldots , s_{n-1},s_{n}\}## contains a greater element. This is the observation. Needed is it, because we have ##a_N := \sup S_N < \varepsilon ##, but we need ##a_n < \varepsilon ## for all ##n> N##. As ##a_n \leq a_N < \varepsilon## this is given.
What would prove ##\lim \sup s_n = 0##?
What I wrote above: For all ##\varepsilon >0 ## there is an ##N \in \mathbb{N}## such that for all ##n > N## we have ##|a_n| < \varepsilon## where our sequence ##(a_n)_{n \in \mathbb{N}} = (\sup S_n)_{n \in \mathbb{N}}##. You see, that the many equal letters ##S_n## for sets and sequence elements is a bit confusing. At least I read your ##\lim \sup s_n = 0## as a typo for ##\lim \sup S_n = 0##. Otherwise I don't know why you want to consider ##\sup s_n##. All that matters is ##\lim s_n = 0## in this part of the proof.
I think we need to take a sequence of all ##sup (s_n : n > k)## and then see where their limit is, but how?
What do the round parentheses now mean? We need ##a_n = \sup S_n = \sup \,\{s_m\, : \,m>n\}##.
 
fishturtle1 said:
I have a theorem from a previous chapter:
Let ##(s_n)## be a sequence in ##\mathbb{R}##.
i) If ##\lim s_n## is defined[ as a real number, ##+\infty, -\infty##], then ##\liminf s_n = \lim s_n = \lim \sup s_n##.
ii) If ##\lim \inf s_n = \lim \sup s_n,## then ##\lim s_n## is defined and ##\lim s_n = \lim \inf s_n = \lim \sup s_n##.

So to show the other direction,
Suppose ##\lim \sup \vert s_n \vert = 0##. We want to show ##\lim \inf \vert s_n \vert = 0##. This seems reasonable because ##\vert s_n \vert \ge 0## and since the ##\sup (s_n : n > k)## keeps getting closer and closer to 0, then ##\vert s_n \vert##'s should be getting closer and closer to 0, but can't get smaller than 0.
Shouldn't this be a little more formal than this? I mean, intuitively it is obvious anyway, so a couple of "closer" would not convince me.
Considering this lemma, I wonder what should be shown at all?
 
fresh_42 said:
Shouldn't this be a little more formal than this? I mean, intuitively it is obvious anyway, so a couple of "closer" would not convince me.
Considering this lemma, I wonder what should be shown at all?
Yes I meant to say that was my intuition and I couldn't think how to put this into an actual argument.

##(\rightarrow)## Suppose ##\limsup \vert s_n \vert = 0##. Let ##\varepsilon > 0##. By definition of limit, there exists ##N## such that ##n > N## implies ##\vert \sup \vert s_n \vert \vert < \varepsilon##. By definition of supremum and absolute value, we have ##\vert s_n \vert \le \sup \vert s_n \vert \le \vert \sup \vert s_n \vert \vert < \varepsilon##. So ##\vert s_n \vert < \varepsilon##. So for all ##\varepsilon > 0##, there exists an N such that ##n > N## implies ##\vert s_n \vert < \varepsilon##. By definition of limit, ##\lim s_n = 0##.

##(\leftarrow)## Suppose ##\lim s_n = 0##. Let ##\varepsilon_1 > 0##. By definition of limit, there exists ##N_1## such that ##n > N_1## implies ##\vert s_n \vert < \varepsilon_1##. So ##\vert \vert s_n \vert \vert = \vert s_n \vert < \varepsilon_1##. Therefore ##\vert \vert s_n \vert \vert < \varepsilon_1##. Therefore, for all ##\varepsilon_1 > 0## we have ##n > N_1## implies ##\vert \vert s_n \vert \vert < \varepsilon_1##. By definition of limit ##\lim \vert s_n \vert = 0##. By theorem 10.7, ##\lim \sup \vert s_n \vert = 0##.
[]
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
7
Views
2K
Replies
11
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K