Limit Definitions and Extreme Value Theorem Help Needed

Click For Summary

Discussion Overview

The discussion revolves around a problem set involving limit definitions, derivatives, and the application of the Intermediate Value Theorem (IVT) in calculus. Participants are seeking clarification on their solutions and the correctness of their approaches to the problems presented.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant describes their approach to finding the derivative using the limit definition, resulting in a specific expression for the derivative.
  • Another participant confirms the correctness of the derivative found and discusses the formula for the equation of the tangent line, suggesting a standard form.
  • Concerns are raised about the application of the Intermediate Value Theorem, with one participant noting that the interval used was not closed and suggesting an alternative interval for proper application.
  • There is a discussion about the behavior of a specific function as it approaches limits, with one participant asserting that the function has at least one root based on its range.
  • One participant expresses doubt about their estimation of intercepting points, while another confirms the correctness of the estimated points.
  • A clarification is requested regarding the tangent line formula used in one of the responses, indicating a potential misunderstanding in notation.

Areas of Agreement / Disagreement

Participants generally agree on the correctness of the derivative and the estimation of intercepting points. However, there is disagreement regarding the application of the Intermediate Value Theorem, as one participant challenges the choice of interval used, suggesting that it should be closed. The discussion remains unresolved on the best approach to apply the IVT.

Contextual Notes

Some participants note limitations in the application of the Intermediate Value Theorem due to the choice of intervals, and there are unresolved questions about the notation used in the tangent line formula.

ardentmed
Messages
158
Reaction score
0
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:
08b1167bae0c33982682_10.jpg


For 1a, I just took \lim_{{h}\to{0}} of the function using
[ f(x+h)-f(x) / h ]
and simplified.

Ultimately, this gave me -8/(2√(1-8x)) which equals:

f(x) = -4/(√1-8x)
As for 1b, I just used the slope form of the function and substituted 1a's answer into the function to get:

y-3 = [-4/(√1-8x)] * (x+1)


As for 2a, I used the intermediate value theorem, stating that if f is continuous on [a,b] then N is any number between f(b) and f(a_ and thus f(c) = N exists.

To prove this f -> infinity as x-> 0+
and f -> infinity as x-> infinity proves that one real root must exist by the IVT. Is this right? I'm somewhat doubtful of my solution.

As for 2b, I just found the intercepting points to be [1.34,1.35] Did I estimate this properly? Thanks in advance.
 
Physics news on Phys.org
ardentmed said:
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:For 1a, I just took \lim_{{h}\to{0}} of the function using
[ f(x+h)-f(x) / h ]
and simplified.

Ultimately, this gave me -8/(2√(1-8x)) which equals:

f(x) = -4/(√1-8x)
As for 1b, I just used the slope form of the function and substituted 1a's answer into the function to get:

y-3 = [-4/(√1-8x)] * (x+1)


As for 2a, I used the intermediate value theorem, stating that if f is continuous on [a,b] then N is any number between f(b) and f(a_ and thus f(c) = N exists.

To prove this f -> infinity as x-> 0+
and f -> infinity as x-> infinity proves that one real root must exist by the IVT. Is this right? I'm somewhat doubtful of my solution.

As for 2b, I just found the intercepting points to be [1.34,1.35] Did I estimate this properly? Thanks in advance.

1a. The derivative is correct!

1b. The formula of the equation of the tangent line to $f$ at $x=x_0$ is
$$y-f(x_0)=f'(x_0)(x-x_0)$$2a. To use the intermediate value theorem you have to find a closed interval $[a,b]$. The interval that you used is not closed.

Using the interval that you chose, you could do the following:
$f=\ln{x}+2x-3$
The domain of $f$ is $(0, +\infty)$.
$f$ is increasing on this interval.
So the range of the function is $\displaystyle{R= \left ( \lim_{x \rightarrow 0} f(x), \lim_{x \rightarrow +\infty} f(x) \right )=(-\infty, +\infty)=\mathbb{R}}$

So, since $0 \in R$, the function has at least one root.To use the intermediate value theorem, you could use the interval $[1,2]$.

2b. It is correct!
 
mathmari said:
1a. The derivative is correct!

1b. The formula of the equation of the tangent line to $f$ at $x=x_0$ is
$$y-f(x_0)=f'(x_0)(x-x_0)$$2a. To use the intermediate value theorem you have to find a closed interval $[a,b]$. The interval that you used is not closed.

Using the interval that you chose, you could do the following:
$f=\ln{x}+2x-3$
The domain of $f$ is $(0, +\infty)$.
$f$ is increasing on this interval.
So the range of the function is $\displaystyle{R= \left ( \lim_{x \rightarrow 0} f(x), \lim_{x \rightarrow +\infty} f(x) \right )=(-\infty, +\infty)=\mathbb{R}}$

So, since $0 \in R$, the function has at least one root.To use the intermediate value theorem, you could use the interval $[1,2]$.

2b. It is correct!

Thanks for the insightful response. Could you please clarify what you're referring to for 1b?
 
$$y-f(x_0)=f'(x_0)(x-x_0)$$ is just a fancy way of writing $$y=mx+b$$, where b is $f(x_0)$, and m is the derivative of the tangent or $f'(x_0)$
 
ardentmed said:
Thanks for the insightful response. Could you please clarify what you're referring to for 1b?

When you calculated the tangent line at $x=-1$, you used the formula: y-f(-1)=f'(x)(x-(-1))

but it should be:
y-f(-1)=f'(-1)(x-(-1))
 
Last edited by a moderator:

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K